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Market Bubbles and Crashes as an Expression of Tension be-

tween Social and Individual Rationality: Experiments

Abstract

We investigate the claim that social rationality explains the emergence of one type of bubble in
competitive asset markets that we shall refer to as “credit market bubble,” and that individual
rationality explains the subsequent crash. The bubble is defined as a situation where (i)
the debt is priced above its intrinsic value and (ii) the debt is rolled over even though each
creditor should cash in as it is commonly known that the debtor would never be able to repay
the debt at face value. Building on evidence from behavioral game theory, we conjecture that
credit market bubbles emerge whenever the debtor’s payment ability, although never sufficient,
grows over time. As such, bubbles are beneficial, even if they eventually lead to crashes which
cause re-distribution of wealth away from those who ride the bubble too long. We argue that
this captures the essence of many financial bubbles alleged to have been observed in the real
world. Experimental data confirm the emergence of bubbles in this setting. The bubbles are
robust – they re-emerge upon replication – but decay can be avoided by adding noise, e.g.,
through random replacing participants with (informed) newcomers. The presence of financial
markets increases the overall beneficial effects of the bubbles. Prices always remain above
levels predicted by conventional asset pricing theory. Nevertheless, they exhibit properties of
(informational) efficiency, such as: prices cannot be used to predict the length of the bubble,
but correlate with the payoffs that the claims eventually generate.
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I. Introduction

Periods of exuberantly increasing asset prices followed by sharp price declines (crashes) are

said to have been part of competitive financial markets ever since their inception in late 15th

century Antwerp (Schumpeter [1939]). Most accounts of alleged asset price bubbles focus on

the detrimental effects of the eventual crash. For example, the housing and credit market

bubble that burst in 2007-8 has been claimed to have caused an almost 5% drop in U.S. GDP

between the second Quarter of 2008 and 2009, and about a 25% drop in wealth, much of it

invested for insurance and retirement purposes. Still, there is no doubt that the economy

benefited immensely from the funding available because of the build-up of the bubble. Indeed,

it is possible to argue that everyone would have been worse off if the financial securities said

to be the cause of the crash had never been allowed in the first place.

But such an argument is difficult to defend when dealing with bubbles that emerge in the

field, because we do not have the data to prove the case. That is why experimental economists

have long attempted to create bubbles in a controlled environment. One setting where asset

prices (in the market for a single asset with stochastic dividend payments and a principal of

zero) are often too high and eventually drop back to a rational level was pioneered in Smith

et al. [1988]. Since Smith et al., there has been a large series of experimental studies addressing

the effects of different design parameters on the magnitude of the pricing bubbles.

It is difficult to make sense of the prices in bubble experiments–it requires that subjects

collectively make very large mistakes. It is therefore perhaps not surprising that the bubbles

are not robust: the mis-pricing quickly disappears with experience; even if only one-third of the

subjects have had prior experience, it fails to re-emerge (Dufwenberg et al. [2005]; re-kindling

the bubble requires specific changes in the parameters, see Hussam et al. [2008]).1

On a purely theoretical basis, however, arguments can be raised to explain prices. Specif-

ically, it requires risk neutrality to claim that a steady decline is the only viable equilibrium

price path. Under risk aversion, many price paths are consistent with equilibrium. This is

1The bubble is robust in other dimensions, though: it survives manipulations of the first time it is tried with
a new cohort, such as the addition of futures markets as in Noussair and Tucker [2006], the disallowance of
speculative trades as in Lei et al. [2001], etc.
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because markets are generally hugely incomplete. For example, if dividends can take on one

of two values, and dividends are paid N times, then there are 2N possible final outcomes, and

depending on individual preferences, agents will trade continuously to generate their preferred

final wealth; the intermediate trading could create price paths like the ones obtained, with

the exception of those price paths for which prices move above the maximum or minimum

predicted future dividends. In fact, only the latter provides unequivocal bounds on rational

asset prices (Bossaerts [2009]).

Additionally, as several researchers have noted (for a recent paper see Noussair and Powell

[2010]), the original Smith et al. asset payoff structure lacks a “real world” flavor. The sinking

fund feature is rarely seen in naturally occurring financial markets and possibly clashes with

the participants’ idea of what a stock payoff should look like. When the expected payoff of

the asset is changed to be constant across trading rounds, the bubbles all but disappear (see

Noussair et al. [2001] and Kirchler et al. [2010]). More generally, attempts to generalize the

market setup and the asset structure have met with mixed success in sustaining/eliminating

the bubbles.

The goal of this paper is to create a realistic setup that generates bubbles in the lab in

a way that is (i) unambiguous and (ii) robust. The former requires a design with a unique

corresponding asset pricing equilibrium. The latter goal implies a design that allows for the

bubble to be replicated, possibly within the same cohort and with the same parameters.

Our design exploits what we think is the cause of (credit) bubbles in the real world, namely,

all creditors know that there is never going to be enough cash to repay the full debt incurred

in the economy but they would get more if they collectively refinance the debt and wait for

final payment until later. When put like this, the underlying game between creditors has the

flavor of a multi-person centipede game. Theory predicts that it is individually rational for

each creditor to refuse to ever roll over the debt, and the resulting equilibrium price of the

debt instruments would equal the immediate debt repayment value. A bubble emerges if prices

are higher. This could happen because creditors refinance the debt and hence, collect more on

average. But re-financing is not in one’s self interest.
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Experimentation with the centipede game has generated robust deviations from the Nash

equilibrium predictions; see McKelvey and Palfrey [1992] for a 2-person, and Murphy et al.

[2004], Schotter and Yorulmazer [2009] for a multi-person version of the game.2 Importantly,

the resulting allocations Pareto-improve over the equilibrium allocation. As such, players are

evidently willing to forgo best-responding with the risk of being defected upon, as long as

there is a good chance that everyone will be better off. While one cannot exclude that choices

partly reflect (random) mistakes, economists have generally interpreted the deviations from

individually rational behavior as evidence of other-regarding preferences and social norms, and

have incorporated those in their models under the genre of “behavioral game theory.” Explicit

estimation of the relative contributions of social concerns vs. decision errors exist, not for the

centipede game, but for another game in the same category, namely, the public goods provision

game [Goeree et al., 2002, Anderson et al., 1998].

We refrain from explaining the deviations in terms of preferences or norms (which would

imply that individuals always commit to the same level of altruism or inequity aversion) and

instead refer to the willingness of an agent to forego individual rationality because of potential

Pareto improvements as social rationality. Social rationality is about exploiting Pareto im-

provements only when there is a chance of reciprocity. Social rationality will not emerge when

reciprocity is unlikely to emerge.

Here, we focus on the potential effect that the introduction of financial markets would have

in the centipede game. We conjecture that financial markets would enhance social rationality

by providing opportunities for agents with less faith in social rationality to sell their claims

to agents who believe in social rationality. This necessarily means that prices should robustly

deviate from standard equilibrium predictions. That is, a bubble must emerge. Because

eventually everyone decides to cash in (almost always before the end of the game), prices will

have to crash.

2Schotter and Yorulmazer [2009], implements the game in a bank run setup; they find that “while the theory
predicts no late withdrawals, we see that 50%, 67% and 58% of the subjects withdraw in late periods in the
Simultaneous, Low and High-Information Sequential treatments, respectively.” The late withdrawals are robust
to replication of the game. This behavior is consistent with that observed in the centipede game; see Palfrey
and McKelvey (1992).
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Our conjecture is not trivial. One can easily counter-argue that financial markets bring

outcomes closer in line with individual rationality. First, there is ample evidence that addition

of financial markets improves valuation, and hence, choices, in situations where prices would

otherwise reflect mistakes that emerge because of (i) failure of information to aggregate, as in

Forsythe et al. [1984], (ii) cognitive limitations, as in Laibson and Yariv [2007], Asparouhova

et al. [2010], Oliven and Rietz [2004], or (iii) confusion, as in Porter and Smith [1995]. Second,

in our specific context of credit bubbles, one can envisage that prices reveal how long other

participants are willing to wait until cashing in their claims, so that best-response becomes

easier to determine, leading to a rapid unraveling of the credit bubble.

Our setting is closely related to one which has become the work horse of the bank runs

literature (see Diamond and Dybvig [1983] and Schotter and Yorulmazer [2009]). There, how-

ever, the only way to redeem (cash in) a claim is to clear it with the issuing institution. In

our setting, agents also have the option to sell their claim in a secondary market. Indeed, our

primary focus is asset pricing. Also, bank runs are an equilibrium phenomenon, while bubbles

(in our setting) are not. Furthermore, it is important to note that ours is neither a prediction

nor a derivative market to a game [Berg et al., 2008, Wolfers and Zitzewitz, 2004]. Instead,

ours is a market integrated into a game – the players in the market and those concurrently

playing in the game are one and the same. As a result, prices form endogenously.

Our approach is closer to Kogan et al. [2010], which studies the effect markets have on the

outcomes of a game, namely a coordination game. There, the focus is on the effect of markets on

equilibrium selection, whereas we focus on the effect of markets on non-equilibrium behavior,

and, most importantly, the feedback from non-equilibrium behavior in the game on asset

pricing. Endogeneity of prices also distinguishes our setting from that of clock games (Abreu

and Brunnermeier [2003], Moinas and Pouget [2010]), which have shed light on individual

incentives to ride the bubble in the context of excessively high asset prices.

In our experiments, we unambiguously observed pricing bubbles. Significantly, relative to

(control) experiments without markets, social welfare (average effective payments per claim)

increased. As such, financial markets appear to enhance social rationality rather than eliminate

it. Offsetting the enhanced social welfare was an increase in payoff volatility: since it was
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hard to predict when the bubble bursted, some subjects lost money (relative to the payoff of

immediately cashing in) because they failed to sell in time or cashed in too late.

Prices were always above intrinsic values (current redemption values of all the claims), a

hallmark of price bubbles. Prices were mostly even above the effective value, defined as the

actual payout per unit of outstanding claims (which therefore reflects the actual roll-over de-

cisions made by the subjects). But prices did exhibit features that one would associate with

an (informationally) efficient market. While the initial price level predicted the minimum du-

ration of the pool, it could not predict its eventual duration. Initial prices were also correlated

with effective value. This means that higher initial prices were an indicator of higher poten-

tial payoffs from future cash-ins. As such, asset prices reflected future reward opportunities.

Prices exhibited efficiency in yet another important respect, namely: during the first repli-

cation, a simple strategy whereby one purchased at the average price in the first round and

sold right after the face value had increased beyond the original purchase price generated a

favorable risk/reward trade-off (Sharpe ratio). A positive risk-reward trade-off would attract

risk-tolerant investment, and hence, further enhance the bubble.

While bubbles re-emerged, we observed decay when replicating with the same parameters

and subjects. To determine whether it was easy to avoid decay, we organized a sequence of

eleven online replications, whereby subjects self-selected into the replications from a common

pool (an introductory class in finance at Caltech), and where the entire pool had access to

histories of prices and trades as well as credit bubble durations from past replications. Now

subjects were not always the same anymore across replications, but all were informed about

the past. The bubbles replicated robustly in this more noisy environment, without any sign

of decay. Altogether, noise thus appears to be important for social rationality to survive in

the presence of (individually rational) attempts to profit from it. Ours therefore is another

example of how noise promotes the well functioning of financial markets (Black [1986]).

The remainder of the paper is organized as follows. In the next section we introduce

the general methodology. Section III formalizes the setup. Specifics of the experiments are

discussed in Section IV. Results are reported in Section V. In Section VI, we elaborate on
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decay in the duration of the credit bubble. Section VII offers further discussion and Section

VIII concludes.

II. Methodology: General

All experiments were variations of the following setting. Subjects were allocated a fixed and

known number of securities. The securities (called “tickets”) were claims to a growing pool

of money. Subjects could trade the securities in an electronic, continuous limit order market

for several rounds in a row (we used Flex-E-Markets; see http://www.flexemarkets.com). The

number of possible trading rounds was limited to nine and subjects knew this beforehand.

At the end of a trading round, subjects could decide whether to roll over their holdings to a

subsequent trading round, or cash-in part or all of their claims. Securities that were not rolled

over were paid out of the pool of money. Significantly, cash-in requests were private, so that

subjects never knew how many tickets had been submitted for cash in.

In each round t, securities carried a known face value F (t) that increased over time. Once

a trading round concluded, if the number of securities submitted for cash-in was lower or

equal than the amount of money in the pool divided by the face value, all submitted securities

paid to their holders the face value. Otherwise, the pool was “liquidated” and all outstanding

securities (not only the ones submitted for cash-in) were paid pro-rata.3 Face values were set

so that there was never enough money in the pool to pay for all outstanding securities. We

shall refer to the pro-rata value of outstanding securities given the amount of money in the

pool in round t as the intrinsic value I(t). If all remaining securities were in the hands of a

single subject, cash-in was forced (roll-over was no longer permitted).

The parameters (number of tickets, the initial size and growth of the pool, and the evolution

of the face values) were jointly determined so that it was always in one’s interest to cash-in (to

not roll over one’s claims) the round before all remaining subjects were expected to cash-in.

This required, among others, F (t) > I(t+1), for all t. As a result, all Nash equilibria outcomes

3In the early treatments only the submitted securities would be paid pro rata. The theoretical implications of
both setups are identical, however, the setup where all outstanding securities are paid is the one more commonly
observed in practice.
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have the pool being liquidated after the first round. Nevertheless, the parameters were also

set to ensure that everyone is always better off if all decided to roll over their claims to the

subsequent round. As a result, the Nash equilibria are not Pareto optimal; Pareto improving

payouts can be obtained only if one refrains from best-responding to other agents’ strategies,

i.e., to not act in self-interest.

Table I illustrates this with an example. (We ran the experiments with parameter values

like the ones used to create this table.) Table I shows that there were substantial incentives to

cash in before the last players. For example, if two players roll over the securities until t = 4

(third row), cashing in at t = 3 generates $1.80 while rolling over till t = 4 leads to a payoff

of only $0.26, even if four other players plan to cash-in at t = 3 as well. As a result, if one

observes roll-over of securities with our parameter choice, one cannot readily attribute this to

lack of incentives. The only exception is when the group of claim holders that cashes in last

is large. For example, when all ten other players roll over until t = 3 (second row of Table I),

then cashing in at t = 2 leads to a payoff of 1.50, while rolling over to t = 4 generates only

a marginally lower 1.32. As such, defection is less profitable, and recurrence of the bubble is

more likely.

The availability of a competitive market in which claims can be traded does not change

the conclusion that one should exercise early. At first, one might conjecture that the addition

of the market would change incentives to cash in early. For example, if the price P is higher

than the current face value, an agent who would have planned to cash in immediately absent

markets should sell her claims rather than cashing in. As a result, cash-ins are postponed.

However, such prices are not rational in the sense of Radner [1972]: they do not correctly

anticipate the value of the traded security in the next round.4

Generally, if the last cash-in takes place in round t + 1, then the rational price P (t) that

players who plan to cash in at t+ 1 are willing to offer must be the round- t+ 1 intrinsic value

4Take the first cash-in example. Six players cash-in in round 3 and four cash-in in round 4. Given this action
profile of the other players, the 11’th player’s best-response is to cash-in in round 3. Now, in the presence of
markets, this player would find it beneficial to sell her claim in round 3 instead of cashing in only if the price is
better than the cash-in value (which equals the face value F (3) = 1.80). The only players willing to buy from
him at a price different from F (3) are the four players planning to cash in after round 4. But if these players
have rational expectations, they are not willing to pay more than the intrinsic value in round 4 of the claim,
I(4), which equals 0.82. Since I(4) < F (3), cashing in rather than selling remains the best response.
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I(t + 1). By construction, however, F (t) > I(t + 1), so F (t) > P (t) and the best response to

other players’ plans continues to be cashing in rather than selling. Therefore, incentives are

unaltered by the addition of the market as long as at least two players hold securities.5

III. Formal Theoretical Setup

We study a T -period economy with N risk-neutral agents (creditors). In period 1 each creditor

has an endowment of D securities that are claims to a pool of money (or numeraire good; the

pool can be thought of as the wealth of a fictitious lender) with a face value of F (1) each and

C units of cash. The face value of the asset grows deterministically at rate r each period, i.e.,

in period t the face value is F (t) = F (1 + r)t−1. Agents choose when to cash-in their claims

against the cash pool, which in period 1 is P1 < NDF . After each period, the amount left in

the money pool grows at a rate of r∗ < r. The decision “to not cash in” corresponds to the

decision “to roll over” the debt.

Let S = (s1, s2, s3, . . . , sT ) denote the total number of claims submitted for cash-in after

each period, from 1 to T . Let P (t) denote the cash remaining in the pool in period t before

claim submission decisions have been made. For t > 1, P (t) = max{0, (P (t − 1) − st−1F (t −

1))(1 + r∗)}. Let πt(S) denote the payoff to each submitted claim in period t. Thus, for t > 1

πt(S) =

 F (t) if stF (t) < P (t)

P (t)∑
τ≥t sτ

otherwise

The above presents a N-person (centipede-like) game where each player n has a strategy

sn = (sn1 , s
n
2 , s

n
3 , . . . , s

n
T ). Given s = (s1, s2, . . . , sN ), the payoff of strategy sn is

∑T
t=1 s

n
t πt(S),

where S =
∑N

n=1 s
n. The game is parameterized by (T,N,D, F, P (1), r∗, r). We set T = 9,

N = 20, D = 6, F = 1.25, P (1) = 124.8, r∗ = 0.1, r = 0.2. The experiments used similar

5This result would not necessarily obtain, however, if one player could buy all the securities and, to maximize
payoff, roll them over until the last round, to collect the pro-rata value based on a maximally grown pool of
money. We eliminated this possibility by forcing cash-in when only a single holder remained. That is, roll-over
was allowed only when there were at least two securities holders. From the moment there are at least two
players, competition forces early cash-in.
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parameters. There were differences in number of subjects, number of claims per subject, etc.,

but we always adjusted the parameters such that the main theoretical predictions continued

to obtain.

Proposition 1. For the chosen parameters the unique equilibrium outcome is one where the

pool is liquidated at t = 1.

In our experiments (with the exception of the control experiments), agents had the oppor-

tunity to trade tickets among themselves before requesting cash-in. Let pt denote the price of

the claims in period t.

Definition 1. (Radner-Nash Equilibrium) Given (T,N,D, F, P1, r
∗, r) an equilibrium in the

financial markets-centipede game economy consists of a price vector p = (p1, p2, . . . , pT ), a

net trade decision vector for each agent n, ∆Dn = (∆Dn
1 ,∆D

n
2 , . . . ,∆D

n
T ), and a strategy

sn = (sn1 , s
n
2 , s

n
3 , . . . , s

n
T ), both of which are feasible (i.e, (i) pt∆D

n
t ≤ C −

∑t−1
τ=1 pτ∆Dτ +∑t−1

τ=1 s
n
τ πτ (S), and (ii) snt ≤ D+

∑t
τ=1 ∆Dτ −

∑t−1
τ=1 s

n
t−1 where we set sn0 = ∆Dn

0 = 0 for all

n such that the following hold

• Given p and
∑
s−n each agent n chooses ∆Dn and sn = (sn1 , s

n
2 , s

n
3 , . . . , s

n
T ) to maximize

C −
∑T

τ=1 pτ∆Dτ +
∑T

τ=1 s
n
τ πτ subject to the feasibility conditions (i) and (ii).

• The price pt clears the certificates market in period t, i.e.
∑

n ∆Dn
t (p) = 0.

Proposition 2. All Radner-Nash equilibria of the economy have the the pool being liquidated

at t = 1 and p1 = π1 = I(1) = P (1)
ND .

IV. Details About The Experimental Sessions

We report here on eleven experimental sessions. Seven were run at Caltech and are referred to

as CIT1 to CIT7. Four sessions consisted of three replications, two consisted of two replications,

and one session had four replications. Another session was ran at the Ecole Polytechnique

Fédérale Lausanne, EPFL1, but had only one replication. Finally, three sessions with three
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replications each were run at the University of Utah, UU1, UU2, and UU3.6 Parameter values

differed slightly across experimental settings, as displayed in Table II, but we always made

sure that traditional theory implied no roll-over of securities past the first round.

Shortsales were allowed and exploited in all but the five early experiments (CIT1 to CIT4

and EPFL1). When selling short, subjects were exposed to the risk of being chosen to pay the

face value (or liquidation value) of a holder who submitted his/her ticket for cash in. With

the exception of the first five sessions, the rest of the sessions had a trading round following

the announcement of the liquidation of the pool but before the securities paid off. Thus, the

participants had a choice to either buy or sell securities, with the knowledge that the pool

would be liquidated and all outstanding securities would pay the intrinsic value.

We will also report on five sessions where subjects could not trade their claims in a mar-

ket. In all other respects, these sessions were the same as those with trading opportunities.

They were ran as a control with which to determine the impact of financial markets on social

rationality. See Table III for details.

In all experiments subjects were paid based on performance. For example, in all but

one of the Caltech sessions subjects started with 6 claim securities, $6 of cash and a pool

of money that started at value of $1.04 per claim and grew at a rate of 10% per round.

The money that subjects made during the experimental session (without any conversion from

experimental dollars to US dollars) was theirs to keep. Including the sign up reward, subjects

made approximately $35 (or the equivalent in Swiss francs), and the range of payoffs was from

about $10 to $55.

The duration of the bubbles could have been biased downward by a hardware limitation:

the sessions took place in laboratories where computer mouse clicking would reveal submission

of claims for cash-in after the trading round. In three of the Caltech sessions (CIT2, CIT3 and

CIT4), loud background clicking noise was used to mask individual subjects clicking during

cash-in request submission. Likewise, the limited total duration of the experiments (two hours)

may have led to premature termination of the last replication (subjects might have been eager to

6All experiments were approved by the relevant Institute Review Boards for the protection of human subjects
in academic research.
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leave). In CIT4, we tried to avoid such end-of-experiment effects by allotting a fixed amount of

time (20 minutes) to each replication, independent of the actual duration of the replication. In

the rest of the experiments, we merged trading and submissions for cash-in so that background

clicking noise was no longer needed; the clicking generated by regular trading was sufficient to

mask cash-in submissions.

All experimental procedures were explained in detailed instructions. A set of instructions

is reproduced in the Appendix. Each session started with the experimenter reading the in-

structions out loud. The participants were allowed to interrupt the reading of the instructions

if they had any questions. Following the instruction period, there was a practice round. The

practice round replicated the first couple of rounds of the actual experiment except for the size

of the money pool. The practice round helped participants familiarize themselves with the

software (Flex-E-Markets) and the rules of the game before their actions counted towards the

take-home pay.

V. Results

We never observed behavior (and pricing) in accordance with traditional theory. The pool was

never liquidated after round 1, neither in the sessions with markets nor in the control sessions

(without markets).

Table IV lists the number of rounds until liquidation (“bubble duration”) for each replica-

tion in each experimental session. In the first replication, bubbles lasted on average over five

rounds, but decay was observed subsequently, down to two rounds in the fourth replication. In

the control sessions (where subjects could not trade their claims), the number of rounds until

liquidation was equally large, and the decay upon replication no less. So, financial markets do

not appear to lengthen the life of the pool.

In contrast, as Table V shows, the presence of financial markets substantially increased

social welfare (measured as the average payout realized on cash-ins per claim unit). Without

markets (i.e., in the control sessions), cash-in delays increased the average payout by 29% over
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that under the subgame perfect equilibrium in replication 1. This increase is reduced to 8%

by replication 3. With markets, social rationality led to an increase in average payout of 36%

per claim unit, and this was reduced only to 20% in the third replication. As such, financial

markets increased the social welfare induced by social rationality.

The cost of this increased social value is the risk of ending with a claim that is worth

nothing because everyone else cashed in earlier and no money was left in the pool. As we shall

document later, the disparity of final wealth across subjects was indeed large.

Figure 1 displays percentages of claims cashed in after each round in the sessions with

markets. Subjects always cashed in uniformly across rounds (before termination of the money

pool) in the first replication. With no exception, the incidence of cash-in after the first and the

last active rounds from the first replication was reduced in the second replication; submissions

became largely concentrated in a single round. The fact that often no claims were cashed in

at the end of the first round suggests that cash-in decisions were deliberate and systematic, as

opposed to the result of random mistakes.

The evolution of transaction prices is depicted in Figure 2. Each transaction price is

separately benchmarked against: (i) The face value of the claim for the round in which the

transaction took place (F (t)); (ii) The effective value of the claim, E(t), defined as the total

payments effectively made in the round of the transaction and beyond, divided by the total

number of claims outstanding in that round, and (iii) the intrinsic value I(t) of the claim, equal

to the amount of cash in the money pool divided by the total number of claims outstanding

in that round.

A bubble is defined with respect to the rational theory, and therefore a measurement of its

magnitude in a given round t is the difference between the average transaction price in that

round and the intrinsic value of the claim, P (t)−I(t). Thus, in each round the bubble measure

has two components, the “socially rational” part equal to E(t)−I(t), and the “irrational” part

equal to P (t)− E(t).

As the graphs demonstrate, prices always started at or above face values, which themselves

were always above the intrinsic values. Hence, we robustly generated asset price bubbles,
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situations whereby prices remain above fundamental values (defined as intrinsic values) for

substantial periods of time. The bubbles survive replication, unlike in the traditional bubble

experiments [Smith et al., 1988], although there is evidence of decay: a decrease in the size

and length of the bubble.

Prices did exhibit features that typify (informationally) efficient markets, however. With

the exception of EPFL1, prices did start out above the effective value (total money effectively

paid out during the experiment divided by number of claims outstanding), but there was a

tendency for the difference between the trade prices and the effective values to diminish upon

replication, so prices gradually started to reflect the true social value (total effective payout

per remaining claim given actual cash-in policy). They never decreased sufficiently, however,

to predict effective value exactly.

Prices reflected efficiency in another important respect: in the first replication, the mean

return from purchasing at average transaction prices in the first round and selling at average

prices in the round when the face value increased above the purchase price was positive, and

generated a reward-to-risk (Sharpe) ratio equal to 0.67. This strategy was inspired by the

finding that the pool was never liquidated (regardless of replication) before the face value

increased above the average trading price in round 1. In subsequent replications, however, the

strategy became unprofitable.

To further gauge the rationality of prices, we used regression analysis to determine the

relationship between bubble duration (measured as number of rounds until the pool was liqui-

dated) or effective value, on the one hand, and the average trade price in round 1, the number

of participants in the session, and the replication number, on the other hand. The results are

presented in Table VIII. The duration of the bubble depended positively on the number of

participants, and negatively on the replication number. While the latter merely reflects the

decay we already referred to, the cause of the former is not immediately obvious. Significantly,

the intial trade price does not predict bubble duration, as one would expect from the efficient

markets hypothesis.
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When the same independent variables are used to predict the effective value, we find that

both the average round-one price and the number of participants predict the effective value,

while the replication number has a significantly negative impact. The ability of the trade price

to predict the effective value again illustrates that pricing is sensible. Indeed, the efficient

markets hypothesis requires prices to predict future gains. The impact of the number of

participants on the effective value is positive. This is rather surprising, because the effective

value measures the social gain. The finding means that the social gain increases with the

number of participants. To put this differently: social rationality works better in large markets;

individual rationality has less of an impact as the number of participants increases, ceteris

paribus.

In Table VIII, we also report the results of the corresponding regressions when we added

a dummy for sessions where we allowed for shortsales. (Additionally, we included a cohort

dummy, to differentiate the sessions ran with Caltech subjects and those ran with University

of Utah subjects, but this dummy was not significant.) While shortsales had no effect on

bubble duration, it marginally reduced the effective value, and hence, the social gain.

Shortsales did have a significant effect on individual earnings. Figure 4 reports the individ-

ual subject earnings per session (bars above horizontal line) and compares this with maximum

shortsell positions (bars below horizontal line). It is immediate that subjects with high earnings

tend also to be the ones who took short positions.

Figure 4 also illustrates the disparity in final earnings across subjects. In the Radner-Nash

equilibrium, everyone would make the same. Because of social rationality, subjects make more

on average than in the Radner-Nash equilibrium, as pointed out before. But this is at the cost

of substantial cross-sectional uncertainty.

VI. Avoiding Decay

We observed unambiguous decay in the duration of the the credit bubbles. We attribute this to

the strict stationarity of the replications: they were consecutive in time, and involved the same
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subjects and the same parameters. To test this, we subsequently changed the experimental

design slightly, to determine whether these minimal changes could at least slow, if not eliminate,

the decay. Essentially, we allowed subjects to change from one replication to another, while

still ensuring that they had experience with credit bubbles or, at a minimum, had access to

data from past replications. Also, unlike in the previous experiments, where subjects showed

up in the laboratory with minimal idea about the type of experiment they would be involved

in, subjects now knew the nature of the experiment, and could opt to stay out.

The experiment was organized as part of an introductory finance class at Caltech. All stu-

dents were free to sign up for the replications and received fixed class credit for participation; in

addition, they were paid for performance exactly as before, without any impact on their class

grade. To simplify participation, the sessions were organized online, and a special web site was

set up to facilitate communication and logistics (see http://www.hss.caltech.edu/∼pbs/CMexp/).

Students in the class came from a variety of backgrounds (graduate, undergraduate, covering

diverse majors, from physics to biology and business economics and management); about 80

students were eligible to sign up for the experiments. All had experience with the trading in-

terface, Flex-E-Markets, having participated in experimental session either in-class or outside

class.

We refer to the experiments as “online replications” because participants were not asked

to show up in a physical laboratory; instead, they logged on to the experiment web site (see

above for URL) in time for a session to start, from wherever they had internet access. Relative

to the in-lab experiments discussed before, we changed one additional feature: we started the

pool “in the money,” which meant that the initial face value of the credit certificates was

below their intrinsic value. From round 2 on, the situation was as before. We introduced this

complication in order to confirm that cash-in decisions were deliberate and systematic, and

not mostly driven by mistakes. We expected to (and did) observe less (or no) cash-in in round

1, because the face value was below the intrinsic value only starting from round 2.7

7In the online experiments, at most 2% of the tickets were cashed in after the first round in all 11 sessions;
while when we started the pool out of the money in the earlier experiments, 5% or more were cashed in after
the first round in 8 out of 11 sessions (first replication).
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In the online replications, we had far less control over the situation than in the case of

the in-laboratory experiments. We scheduled fifteen replications, but eventually had to cancel

three because only a few subjects showed up online in time. Additionally, we had to discard

the data from one replication, because we incorrectly accounted for subjects who had signed

up but did not show up. Communication during the experiment took place through a chat

window integrated in the market exchange platform. The lack of control worked both ways:

while subjects knew the size of the pool backing the credit, the number of securities outstanding

initially as well as the number of players, they could not have full knowledge about who else

was participating because they could not even see them. Subjects used online pseudonyms

during the entire experiment.

From the first to the last replication, the durations of the bubbles, in rounds, were: 5, 5,

4, 6, 8, 8, 6, 6, 8, 6, 7. As such, there is no evidence of decay. Cash-in histories, plotted in

Figure 3, showed little or no cash-in requests in round 1 (as expected), while requests in round

2 gradually declined over time, though not uniformly.

Table IX provides information of the evolution of transaction prices (“Trade”), face values

(“Face”), intrinsic values (“INT”), as well as effective remaining values (“EFF”). A number of

features replicate the in-laboratory experimental sessions.

1. The average transaction price in round 1 again provides an indication of the minimum

(but not actual) duration of the pool. In all sessions, the pool ran out of money only

after the face value increased to a level above the average trade price in round 1.

2. Substantial social welfare was created: the ratio of the initial effective value over the

initial intrinsic value ranges from 1.37 (1.96/1.43,8 Nov 16 11 5:30pm session) to a low

of 1.08 (1.55/1.43, Nov 1 11 5pm session). A ratio of 1.37 indicates that participants

as a group earned 37% more than they would have if all were individually rational and

everyone cashed in after round 2.

8The round-two intrinsic value is used as benchmark, because nobody should cash in after round 1, in which
the face value is below the intrinsic value of round 2 (this intrinsic value does assume that nobody actually
cashes in after round 1, which did not always obtain.
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3. There was no trend in trade prices in early rounds. However, when the pool survives

beyond round 4, prices tend to increase.

4. While falling often dramatically relative to prior trading rounds, prices after annouce-

ment of liquidation invariably are too high compared to the liquidation value (intrinsic

value of last round).

5. Trade prices in round 1 are still too high compared to effective values, but the gap is

reduced; in the first session (Nov 1 11 4pm session), the average trade price (1.71) is

pretty much equal to the effective value (1.72).

While initial trade prices are still too high relative to effective values, the strategy of buying

at average prices in round 1 and selling at average prices in the round where the face value

increases above the original purchase price generates a good risk-return trade-off: its Sharpe

ratio equals 0.89. See Table X. When cashing in rather than selling in the marketplace, the

return is reduced significantly, and the Sharpe ratio is a mere 0.02. Both strategies exhibit

negatively skewed returns. The profitability of this investment strategy would reinforce the

credit market bubble. Speculators would buy in round 1 and sell in a later round, thus

postponing cash-in of the tickets they bought, potentially delaying liquidation of the pool.

Overall, the online class experiments show that with less control, bubbles continue to

emerge upon replication. It thus takes minimal noise in the system for social welfare to

continue to be enhanced. The finding is reminiscent of information aggregation experiments,

which produced mixed results [Plott and Sunder, 1988] because without noise they run into

the curse of no-trade theorems [Milgrom and Stokey, 1982]. A disciplined way to introduce

noise is to provide incentives to trade because of risk or ambiguity concerns. In information

aggregation experiments [Bossaerts et al., 2011], this has led to the disappearance of anomalies

such as “information mirages” [Camerer and Weigelt, 1991]. In future experiments, we plan to

use trading for risk re-allocation purposes as a vehicle to ensure survival of social rationality,

and hence, social welfare generated by credit market bubbles.
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VII. Discussion

Naturally, the question is why we see bubbles and why we can replicate them. Human “fool-

ishness” cannot be the sole explanation as subjects overall ended up making more than the

equilibrium payoff. This behavior is similar to what is observed in the trust game (Berg et al.

[1995]), where both investor and trustee obtain higher payoffs than predicted by Nash equilib-

rium. What is common to the trust and the centipede game is the availability of actions that,

if collectively taken, make everyone better off. Only, these actions are subject to defection: the

best response to everybody else choosing them is not to choose them oneself (which explains

why they cannot be part of a Nash equilibrium).

Barring mistakes, the observed behavior in such games has been attributed to non-selfish

attitudes (altruism, reciprocity, fairness, trust, etc.). Non-selfish behavior, which we refer to

here as “social rationality,” can be explained as the result of social norms (Camerer and Fehr

[2004], Fehr and Fischbacher [2004]), and consistent with this, its emergence has been shown to

depend critically on the cohort. In an influential cross-cultural study of behavior in ultimatum,

public goods, and dictator games Henrich et al. [2005] have shown that, for example, that “the

higher the degree of market integration and the higher the payoffs to cooperation in everyday

life, the greater the level of prosociality expressed in experimental games.”

Social norms effectively ensure better outcomes (Pareto-improvements) for the group as a

whole in situations where self-interested behavior (best-responding to other players’ actions)

would be detrimental. Social norms do not merely prescribe specific actions in specific games,

but are a general code of conduct whereby individuals engage in non-selfish behavior despite

the risk of being confronted with defection. Social norms ensure beneficial social allocations

even among strategically sophisticated players (Camerer [1997]).

Adherence to social norms requires well-calibrated beliefs about what these norms are.

For instance, in the trust game (Berg et al. [1995]), the entrusting investor makes a decent

return in expectation even though he is occasionally defected upon by the trustee. It has

been demonstrated that mis-calibrated beliefs about other players’ likely actions in the trust
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game are positively associated with general socially maladapted behavior, such as borderline

personality disorder (King-Casas et al. [2008]).

Social rationality has become an integral part of a new line of game theory known as

behavioral game theory (Camerer [2003]). Behavioral game theory aims at explaining actual

human behavior (and also non-human primate behavior, work in progress) based on different

computational principles (e.g., the ability to influence value in repeated games as in Camerer

et al. [2002] and Hampton et al. [2008], or the formation of belief hierarchies in one-shot games

as in Camerer et al. [2004] and Coricelli and Nagel [2009]), in addition to social rationality.

While traditional game theory provides a useful benchmark, behavioral game theory is rapidly

replacing it to explain actual social interaction. Ironically, as King-Casas et al. [2008] indicates,

traditional game theory continues to apply when players suffer from mental disorders.

Social rationality supports Pareto-superior allocations, when such exist, in strategic inter-

action situations. Here, we conjectured that this principle also applies to competitive financial

markets. Our conjecture is based on prior published experimental evidence from one of us,

who studied allocations in situations where the competitive equilibrium is not Pareto optimal.

Specifically, Asparouhova [2006] studied prices and allocations in markets for bank loans under

asymmetric information. Markets failed to settle on the competitive equilibrium when the

equilibrium was not Pareto-optimal. Pareto-improving loan contracts continued to be offered

despite the constant threat of cherry-picking by competitors (who offered new contracts with

the sole purpose of attracting only the low-risk customers). With small exceptions, lenders

refrained from cherry-picking, and (low-risk) borrowers did not wait for the lenders to offer

the cherry-picking contracts. Nonetheless, the loan markets never completely settled on the

Pareto-optimal allocations when these were not the competitive outcome. Instead, markets

cycled between the competitive and the Pareto-optimal outcomes.

In Asparouhova [2006], the effects were significant, but not big. The resulting allocations

did not deviate enough from competitive predictions and an outsider who does not know

the underlying parameters (the actual distribution of risks in the economy) would mistakenly

conclude that the competitive equilibrium obtained under the estimated parameters. Here,
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we studied a competitive market situation where Pareto improvements over the competitive

equilibrium did generate big effects on prices and allocations.

Consistent with the emergence of the Pareto-improving, non-competitive outcomes, prices

in our experiments were above competitive levels, but (necessarily) dropped sharply before the

end of the game. Importantly, the presence of financial markets facilitated the emergence of

social rationality. While the resulting allocations were beneficial on average, we did observe

huge cross-sectional disparities in final wealth. Ex ante, many (and especially the investment

savvy participants) would prefer to have competitive financial markets where one could trade

claims, even if this may create huge wealth inequalities. Of course, an even better outcome

would be to forbid early cash in, or to restrict access to claims to a group of creditors who are

willing to “hold their breath” and not cash in early. Alternatively, one participant could just

buy the entire supply of tickets and hold on to them until the last round. We explicitly ruled

out that possibility (the experimental instructions specified that if one participant managed to

buy all remaining tickets, the pool would be liquidated immediately). It would be interesting

to study pricing in future experiments where we allow participants to become the sole holder

of all outstanding tickets.

Our findings have implications for debt markets. Our allowing participants to cash in

claims is homologous to a situation where claims are all short term and need to be re-financed

every period. To cash in a claim corresponds to a refusal to re-finance. Our findings suggest

that re-financing risk can be detrimental. Individual rationality may cause debt issues not to

be re-financed when social rationality dictates that everyone would be better off to roll over

debt and collect rewards in the future. The risk is real when debt holders cannot somehow

be disciplined to serve the common good. In such situation, it is best for debtors to issue

long-term claims, i.e., securities with maturities optimally matched to income streams.

Because overpricing re-emerges upon replication, our design allows one to study asset price

bubbles experimentally. We think that our setting is more intuitive than the traditional one,

pioneered in Smith et al. [1988]. Moreover, rational pricing in our setting is unequivocal.

We would also claim that our new setting captures the essence of real-life bubbles. First,

its emergence is beneficial for the group (the total payout to the subjects is higher than in
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the absence of bubbles). Second, the bubble eventually will burst, which leads to a huge re-

distribution of wealth. Third, bubbles robustly re-emerge upon replication when there is noise,

and hence, appear to be a natural phenomenon.

As mentioned before, our setting has something in common with the theory of bank runs

(Diamond and Dybvig [1983]). Still, there are fundamental differences. In bank run models,

the face value of the claims is such that everyone can be paid provided most players roll over

claims until the end. There is a shortfall only if most cash in early. In our case, the pool

never holds enough money to pay all claim holders. Here, the mere observation that anyone

rolls over claims is inconsistent with Nash equilibrium, while roll- over of claims in the theory

of bank runs is consistent with Nash equilibrium. Also, bank runs are detrimental to social

welfare, while bubbles in our setting are beneficial.

Experiments on bank runs are relevant for us in one important respect: they allow us

to argue that one alternative cause of non-Nash- equilibrium behavior cannot be the entire

story, namely, random mistakes (relative to Nash behavior). Ignoring markets, in our setting,

mistaken choices can be only of one kind: to roll over claims. In contrast, in bank run settings

with multiple intermediate occasions to roll over, mistakes can be of two kinds: to roll over

claims too long, or to stop rolling over too early. In principle, one would expect these two

types of mistakes to occur equally often. At the same time, one of these mistakes, to roll over

claims too long, is beneficial for the group as a whole (it is in our setting too), because it

increases the pool of money from which certificates of deposit are paid. So, if social norms

explain subjects’ behavior, we would expect to see more “mistakes” of this kind. Schotter

and Yorulmazer [2009] have shown that this is indeed the case, casting doubt on theories that

rely entirely on random mistakes to explain non-Nash behavior (such as cognitive hierarchy

modeling; see, e.g., Kawagoe and Takizawa [2010], for an application to the centipede game).

Explicit estimation of the relative contributions of social rationality and random mistakes have

been computed for another game, namely, the public goods contribution game Goeree et al.

[2002], Anderson et al. [1998].

Like bank runs, rational bubbles (Blanchard [1979], Blanchard and Watson [1982], Tirole

[1985]) are also equilibrium phenomena while price bubbles in our credit market context are
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not. Rational bubbles can emerge in infinite-horizon overlapping generations models. There,

Walras’ law no longer holds, and as a result, allocations in competitive equilibrium may no

longer be Pareto optimal. Indeed, equilibria with bubbles generally improve on a bubble- less

equilibrium (Tirole [1985]). As such, rational bubbles, like our credit market bubbles, are

beneficial for the group as a whole.

Once a credit market bubble is started, agents need to assess what others think (to correctly

anticipate pricing) and what others will do (to correctly roll over securities). To correctly

anticipate beliefs and actions of others is also at the core of beauty contests (Nagel [1995]).

In a beauty contest, players have to guess a number that is closest to a fraction (< 1) of

the mean, median or maximum guess of the other players. There too, the traditional game-

theoretic outcome (namely, to guess zero) does not obtain, at least not in early rounds. Unlike

in our setting, however, there is no benefit to the group as a whole from playing a non-Nash

strategy (namely, to guess any number larger than zero). Behavior during early rounds of a

beauty contest can be explained in terms of limited strategic sophistication (i.e., truncated

belief hierarchies; Camerer et al. [2002]; Coricelli and Nagel [2009]). Upon repetition, one

expects mistakes to decrease, and indeed convergence to Nash equilibrium is observed in the

1/2 median guess settings (Duffy and Nagel [1997]) after 10 replications.

Because non-Nash behavior is socially beneficial in our setting, we could expect social ra-

tionality to prevent convergence to equilibrium. In our tightly controlled in-lab experiments,

we nevertheless see decay towards Nash equilibrium. In the more loosely controlled, and hence,

noisy online experiments, however, there is no decay. The latter corroborates an important

point first raised by the late Fisher Black. Specifically, Black [1986] wrote that ”Noise makes

trading in financial markets possible, and thus allows us to observe prices for financial assets.

Noise causes markets to be somewhat inefficient, but often prevents us from taking advantage

of inefficiencies.” Our online experiment extends these ideas: there, we introduced a sufficient

amount of noise for individual rationality to take over, allowing for social rationality to stay

upon replication even if it is in conflict with individual rationality. The in-laboratory experi-

ments, in contrast, are too transparent (i.e., lack the noise) and hence, social rationality decays

with replication.
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But in this online experiment, we may have introduced noise in a way that is not suffi-

ciently disciplined. A better way would be to introduce random liquidity shocks, or additional

uncertainty that incentivizes market participants to trade for other reasons than just specu-

lating when the pool runs out of money. We have used this approach successfully to eliminate

anomalous pricing (“information mirages”) in prediction markets [Bossaerts et al., 2011]. Fu-

ture experiments on credit market bubbles should borrow design ideas from these successful

experiments on information aggregation.

VIII. Conclusion

Alleged overpricing and subsequent sudden drops in prices have been documented for many

financial markets and many periods even pre-dating the industrial revolution. With few excep-

tions they have an enormous effect on the real economy, yet little is understood about those

bubbles. Field studies have been controversial because of lack of information about true fun-

damental values. For a variety of reasons, past attempts to study bubbles experimentally have

likewise not been influential. Here, we propose a novel experimental design that, according to

our experimental results, proves to be realistic, robust and unequivocal. Our design provides

a canonical setting in which to study the emergence and bursting of the financial bubbles that

have introduced so much uncertainty and disruption in modern, market-based economies. The

study of those bubbles will, however, require new theory because the pricing cannot be ex-

plained with the theory we have now. Just as the anomalies in the underlying centipede game

led to behavioral game theory, our experimental findings underscore the need for behavioral

asset pricing theory. That is, we expect that our findings will lead to a new asset pricing theory

that will build on the central tenets of behavioral game theory.

Notice that this is distinct from behavioral finance, which studies asset pricing when agents

are boundedly rational. Behavioral finance is based on the heuristics and biases approach to

individual decision making pioneered in (Tversky and Kahneman [1974]); in behavioral asset

pricing, agents are computationally and strategically sophisticated, but understand the value

of social norms in enhancing the social welfare of everyone. That is, they are socially ratio-
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nal. Bubbles emerge because of social rationality. Subsequent crashes occur when individual

rationality conflicts with social rationality and wins out.

24



References

Dilip Abreu and Markus K. Brunnermeier. Bubbles and crashes. Econometrica, 71(1):173–204,

2003.

Simon P. Anderson, Jacob K. Goeree, and Charles A. Holt. A theoretical analysis of altruism

and decision error in public goods games. Journal of Public Economics, 70(2):297 – 323,

1998.

Elena Asparouhova. Competition in lending: Theory and experiments. Review of Finance, 10

(2):189–219, 2006.

Elena Asparouhova, Peter Bossaerts, Jon Eguia, and William Zame. Cognitive biases, ambi-

guity aversion and asset pricing in financial markets. Submitted, 2010.

Joyce Berg, John Dickhaut, and Kevin McCabe. Trust, reciprocity, and social history. Games

and Economic Behaviorl, 10(1):122–142, 1995.

Joyce Berg, Robert Forsythe, Forrest Nelson, and Thomas Rietz. Results from a dozen years

of election futures markets research. In Charles R. Plott and Vernon L. Smith, editors,

Handbook of Experimental Economic Results, pages 742–751. North-Holland, 2008.

Fischer Black. Noise. The Journal of Finance, 41:529543, 1986.

Olivier J. Blanchard. Speculative bubbles, crashes and rational expectations. Economics

Letters, 3(4):387–389, 1979.

Olivier J. Blanchard and Mark W. Watson. Bubbles, rational expectations, and financial

markets. In Paul Wachtel, editor, Crisis in the Economic and Financial Structure, pages

295–316. Lexington, 1982.

Peter Bossaerts. The experimental study of asset pricing theory. Foundations and Trends in

Finance, 3(4):289–361, 2009.

Peter Bossaerts, Cary Frydman, and John Ledyard. The speed of information revelation and

eventual price quality in markets with insiders. Unpublished, 2011.

25



Colin Camerer and Keith Weigelt. Information mirages in experimental asset markets. The

Journal of Business, 64(4):pp. 463–493, 1991.

Colin F. Camerer. Progress in behavioral game theory. Journal of Economic Perspectives, 11

(4):167–188, 1997.

Colin F. Camerer. Behavioral Game Theory: Experiments on Strategic Interaction. Princeton

University Press, 2003.

Colin F. Camerer and Ernst Fehr. Measuring social norms and preferences using experimental

games: A guide for social scientists. In Joseph Henrich, Robert Boyd, Samuel Bowles,

Colin Camerer, Ernst Fehr, and Herbert Gintis, editors, Foundations of Human Sociality -

Economic Experiments and Ethnographic Evidence from Fifteen Small-Scale Societies, pages

55–96. Oxford Scholarship Online Monographs, 2004.

Colin F. Camerer, Teck-Hua Ho, and Juin-Kuan Chong. Sophisticated experience-weighted

attraction learning and strategic teaching in repeated games. Journal of Economic Theory,

104:137–188, 2002.

Colin F. Camerer, Teck-Hua Ho, and Juin-Kuan Chong. A cognitive hierarchy model of games.

Quarterly Journal of Economics, 119(3):861–898, 2004.

Giorgio Coricelli and Rosemarie Nagel. Neural correlates of depth of strategic reasoning in

medial prefrontal cortex. Proceedings of the National Academy of Sciences, 106(23):9163–

9168, 2009.

Douglas W. Diamond and Philip H. Dybvig. Bank runs, deposit insurance, and liquidity. The

Journal of Political Economy, 91(3):401–419, 1983.

John Duffy and Rosemarie Nagel. On the robustness of behavior in experimental beauty-contest

games. Economic Journal, 107:1684–1700, 1997.

Martin Dufwenberg, Tobias Lindqvist, and Evan Moore. Bubbles and experience: An experi-

ment. The American Economic Review, 95(5):1731–1737, 2005.

Ernst Fehr and Urs Fischbacher. Social norms and human cooperation. Trends in Cognitive

Sciences, 8(4):185–190, 2004.

26



Robert Forsythe, Thomas R. Palfrey, and Charles R. Plott. Futures markets and informational

efficiency: A laboratory examination. The Journal of Finance, 39(4):pp. 955–981, 1984.

Jacob K. Goeree, Charles A. Holt, and Susan K. Laury. Private costs and public benefits:

unraveling the effects of altruism and noisy behavior. Journal of Public Economics, 83(2):

255 – 276, 2002.

Alan N. Hampton, Peter Bossaerts, and John P. O’Doherty. Neural correlates of mentalizing-

related computations during strategic interactions in humans. Proceedings of the National

Academy of Sciences, 105(18):6741–6746, 2008.

Joseph Henrich, Robert Boyd, Samuel Bowles, Colin Camerer, Ernst Fehr, Herbert Gintis,

Richard McElreath, Michael Alvard, Abigail Barr, Jean Ensminger, Kim Hill, Francisco

Gil-White, Michael Gurven, Frank W. Marlowe, John Q. Patton, and David Tracer. ’eco-

nomic man’ in cross-cultural perspective: Behavioral experiments in 15 small-scale societies.

Behavioral and Brain Sciences, 28:795–855, 2005.

Reshmaan N. Hussam, David Porter, and Vernon L. Smith. Thar she blows: Can bubbles be

rekindled with experienced subjects? American Economic Review, 98(3):924–937, 2008.

Toshiji Kawagoe and Hirokazu Takizawa. Level-k analysis of experimental centipede games.

Unpublished, 2010.

Brooks King-Casas, Carla Sharp, Laura Lomax-Bream, Terry Lohrenz, Peter Fonagy, and

P. Read Montague. “the rupture and repair of cooperation in borderline personality disorder.

Science, 321(5890):806–810, 2008.

Michael Kirchler, Jürgen Huber, and Thomas Stöckl. “Bubbles”–on the impact of cash, fun-
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Appendix: Instruction Set
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INSTRUCTIONS 
 

Summary 

This experiment concerns a market in tickets (claims) issued against a pool of money.  

Across a number of rounds, you will be able to trade the tickets with others at prices 

determined in the marketplace. Each round, you will also be able to submit the tickets to 

us, the experimenters, to be cashed in for a known amount called the face value. This face 

value grows over time (across rounds). The pool of money against which the tickets are 

issued is used to pay those who want to cash in. This pool also grows over time, but at a 

slower rate than the face value. If there is insufficient money in the pool to honor the 

requested cash-ins at face value, the pool is put in liquidation and all outstanding tickets 

will be paid pro rata.  

The experiment will last at most 9 rounds. Your earnings for the experiment depend 

entirely on the cash you hold at the end of the last round. Changes in cash are determined 

by your trading choices (you want to buy low and sell high) and cash-in decisions (you 

want to maximize income from ticket submissions). 

 

Details Of The Setup 

In round 1, you and the other participants hold a total of N tickets (N will be announced 

at the beginning of the experiment). Each ticket has an initial face value of $1.25. In 

Round 2 the face value goes up by 20% and becomes $1.50. The face value continues to 

grow at the rate of 20% (subject to rounding to the nearest cent) in each subsequent 

round. The face values in all rounds are listed in red in the second column of the table 

below. 
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Round Ticket Face Value (USD) 
Value (USD) If 

Liquidation* 

1 1.25 1.04 

2 1.50 1.15 

3 1.80 1.26 

4 2.16 1.39 

5 2.59 1.53 

6 3.11 1.68 

7 3.73 1.85 

8 4.48 2.03 

9 5.37 2.23 

*Assuming no tickets were submitted for cash-in earlier 

 

Each ticket is a claim to a pool of money.  The pool of money starts with $X in Round 1 

of the experiment (X will be announced at the beginning of the experiment). Given the 

total number of tickets (N), there is insufficient money in the pool to pay everyone the 

face value even if all tickets are submitted for cash-in. For instance, at the end of round 1, 

there is $X in the pool, so the amount of money per tickets, X/N, is insufficient to cover 

the face value, $1.25. But the pool of money grows over time, so that there is more 

money available per ticket if everyone waits to submit tickets. The pool grows after 

paying tickets submitted for cash-in. 

 

When not enough money is available to honor the requested cash-ins, the pool is put into 

liquidation, and the remaining money is divided among all outstanding tickets. If, say, 

$45 is left in the pool when it runs out of money, and, say, 30 tickets remain outstanding, 

each ticket fetches $45/30=$1.50.  This liquidation payment will necessarily be less than 

the face value even if nobody cashed in earlier. The third column of the Table above 

shows, in blue, how much each ticket would be paid if no tickets were submitted for 

cash-in earlier and the pool is liquidated after rounds 1,2,3,….,9, respectively. 

 

31



Page 3 of 5 

Importantly, you will not know how many tickets were submitted in any given round 

(except your own, of course). As such, you will never be sure whether the pool will be 

put into liquidation until we announce so.    

 

The figure below is a graphical depiction of the Table above; the red line indicates how 

the face value increases per round, and the blue line depicts how the liquidation value 

climbs. 

 

 
 

 

In addition to tickets, you will begin the experiment with some cash. Use this cash to 

purchase more tickets if you wish. You can increase your cash either by selling tickets in 

the open market or by submitting tickets for cash-in. At the end of the experiment, all the 

cash you have is yours to keep.  

 

Trading And Requesting Cash-Ins 

In each round, you will be able to trade the tickets among yourselves in a market called 

Public. You can buy tickets and thus increase the number of tickets you held in the 

beginning of the round, or sell tickets, and thus decrease your ticket allotment. Public is a 

“public” market: everyone can see all orders that have been submitted, and trade always 

takes place at the best possible price. 
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In Public, you are allowed to short sell tickets. When you short sell, you keep the 

purchase price; however, if the buyer decides to submit your ticket for cash-in, we will 

make YOU pay for the face value or liquidation payment (whichever applies to tickets 

that were not acquired in a short sale). That is, we will take the payment out of YOUR 

cash, not the money pool. If you do not have enough cash, we will take away all your 

cash as penalty, and approach another shortseller to cover the liability. Notice that this 

means that you (as shortseller) may end up paying for someone else's shortsales! 

 

In addition, you will be able to submit for cash-in some, all, or none of your tickets by 

submitting sell orders in a market called Cash-In. This is the market you should use to 

request cash-in of tickets against the pool of money. Unlike Public, in this market you 

need to identify the person you want to sell to. Thus, you should only submit sell orders 

to us, the experimenters; we will be logged in as the participant with name “50.” The 

Cash-In market is a private market, which means that nobody else will be able to see your 

order. Your request would be “valid” as long as you submit a sell order at a price equal to 

or below the face value. 

 

Do not submit any other orders in Cash-In. If you submit an order to buy, or attempt to 

submit an order to sell to someone else besides us (“50”), you may forfeit your earning 

for the session. 

 

While markets are open for trading, nothing happens to your sell orders in the Cash-In 

market (which also means that you may cancel them at any time before markets are 

paused). When markets are paused at the end of the round, the following will happen to 

your valid sell orders in the market Cash-In.   

 

1. If the money pool is sufficient to cover the face values for all submitted sell 

orders, we will buy each submitted ticket for the face value for that round (as 

listed in the Table above).    

2. If there is not enough money in the pool to honor all sell orders at the face value, 

the pool will be put in liquidation. This means that all remaining tickets (not only 
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those submitted through sell orders in Cash-In) will receive the liquidation 

payment.  

 

Liquidation proceeds as follows. First, we announce publicly that there is not enough 

money left in the pool. We then allow for one more trading round before we actually 

liquidate the pool, so that you still have the opportunity to trade tickets among each other 

before we pay the tickets. While Cash-In will remain open during that extra trading 

round, you do not need to submit orders in that market. At the end of the extra round, we 

pay the liquidation payment to all outstanding tickets.  

 

The maximum number of rounds is 9. If at the end of any round before round 9, only one 

participant is still holding tickets, the experiment terminates automatically, and the 

remaining tickets are paid either the face value or the liquidation value, whichever is 

smaller.   

 

Markets are open for 3 minutes in rounds 1 to 3, and for 2:30 minutes in all remaining 

rounds. There will be three sessions. Including instructions, practice, inevitable pauses 

between sessions and rounds, the experiment lasts about two hours.  

 

Good luck!  
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Figures

Figure 1. Percentage of claims cashed in at the end of each round.
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Figure 2. Evolution of prices and values (intrinsic value, effective value and face value)
over time.
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Figure 2. Evolution of prices and values (intrinsic value, effective value and face value)
over time.
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Figure 2. Evolution of prices and values (intrinsic value, effective value and face value)
over time.
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Figure 3. Percentage of claims cashed in at the end of each round, online replications with
self-selection out of a fixed class pool of informed participants.
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Figure 4. Final wealth distribution (blue bars) and shortsales (red bars), all subjects, all
sessions. Figure 1: Wealth Distribution.
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Tables

Table I

For each listed cash-in pattern and a round t, the table displays the intrinsic value

I(t+ 1), the face value F (t), and the actual payoff from rolling over a claim until t and

then cashing. Assumptions: 4 rounds; 11 players with endowment of 1 claim each,

money pool of $12, growing at 10% per round; face values F (t) = $1.25× 1.2t−1. First

column describes strategies of others (number of players cashing in each of the four

rounds); second column displays round where it is optimal to cash-in (always the round

before the last remaining players cash-in).

Admissible Cash-In Optimal Cash-In Round I(t+ 1) F (t) Actual Payoff
Strategy Of Players for Player 11 (t+ 1 = the round when From Cash-In
1 to 10 t last cash-ins are made) At t
(0, 0, 6, 4) 3 0.82 1.80 1.80
(0, 0, 10, 0) 2 1.32 1.50 1.50
(0, 4, 4, 2) 3 0.26 1.80 1.58
(4, 0, 4, 2) 3 0.47 1.80 1.69

41



Table II

Experimental Sessions (With Markets): In all sessions the initial face value of the claims

was $1.25 and grew by 20% each round. The money in the pool in all sessions grew by

10% each round. Every subject was initially endowed with 6 claims and 6 USD (or Swiss

Francs).

Experiment Date Number of Number of Initial Money in
Replications Subjects the Pool

1 CIT1 May 19 2010 2 21 132

2 CIT2 August 11 2010 2 14 87.5

3 CIT3 August 12 2010 3 18 112.5

4 CIT4 August 20 2010 3 13 81.25

5 CIT5 January 12 2011 3 10 62.40

6 CIT6 January 13 2011 4 14 87.36

7 CIT7 January 14 2011 3 15 93.60

8 EPFL1 May 21 2010 1 16 106

9 UU1 February 1 2011 3 16 99.84

10 UU2 February 2 2011 3 19/13/13 118.56/81.12

11 UU3 February 4 2011 3 10 62.40
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Table III

Experimental Sessions (No Markets): In all sessions the initial face value of the claims

was $1.25 and grew by 20% each round. The money in the pool in all sessions grew by

10% each round. Every subject was initially endowed with 6 claims.

Experiment Date Number of Number of Initial Money in
Replications Subjects the Pool

1 NTCIT1 January 12 2011 3 8 49.92

2 NTCIT2 January 12 2011 3 12 74.88

3 NTCIT3 January 13 2011 5 12 74.88

4 NTCIT4 January 13 2011 4 5 31.20

5 NTCIT5 January 14 2011 3 12 74.88
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Table IV

Bubble duration. Number of rounds before pool had insufficient money to pay

submitted cash-in requests. Sessions without markets (“No Markets”) as well as sessions

with markets (“Markets”).

No Markets Replication 1 Replication 2 Replication 3 Replication 4 Replication 5
NTCIT1 6 4 3
NTCIT2 5 3 2
NTCIT3 6 4 3 2 2
NTCIT4 5 3 2 8
NTCIT5 5 4 3

Average 5 4 3 5 2

Markets Replication 1 Replication 2 Replication 3 Replication 4 Replication 5
CIT1 6 5
CIT2 5 3
CIT3 5 4 3
CIT4 6 4 3
CIT5 5 3 3
CIT6 5 4 3 2
CIT7 5 4 4
EPFL 7
UU1 6 5 4
UU2 6 4 3
UU3 4 3 3

Average 5.45 3.9 3.25 2
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Table V

Social welfare created over Nash or Radner-Nash equilibrium. Measured as the

percentage increase in per-claim effective payout over round-1 intrinsic value. Sessions

without markets (“No Markets”) as well as sessions with markets (“Markets”).

No Markets Replication 1 Replication 2 Replication 3 Replication 4 Replication 5
NTCIT1 0.27 0.20 0.11
NTCIT2 0.26 0.17 0.06
NTCIT3 0.40 0.25 0.10 0.03 0.01
NTCIT4 0.23 0.16 0.04 0.09
NTCIT5 0.27 0.17 0.08

Average 0.29 0.19 0.08 0.06 0.01

Markets Replication 1 Replication 2 Replication 3 Replication 4 Replication 5
CIT1 0.28 0.33
CIT2 0.24 0.26
CIT3 0.25 0.25 0.17
CIT4 0.36 0.31 0.21
CIT5 0.38 0.24 0.15
CIT6 0.41 0.28 0.2 0.12
CIT7 0.38 0.3 0.21
EPFL 0.53
UU1 0.4 0.39 0.32
UU2 0.44 0.33 0.19
UU3 0.24 0.18 0.15

Average 0.36 0.29 0.20 0.12
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Table VI

Prices, effective and intrinsic values, sessions with markets. See text for
definition of effective and intrinsic values.

Replication 1 Replication 2 Replication 3 Replication 4

Exp Round Face Average Effective Intrinsic Average Effective Intrinsic Average Effective Intrinsic Average Effective Intrinsic
Value Price Price Value Price Price Value Price Price Value Price Price Value

CIT1 1 1.25 1.72 1.28 1.00 1.87 1.33 1.00
2 1.50 1.74 1.28 1.07 1.94 1.33 1.10
3 1.80 1.96 1.23 1.08 1.89 1.33 1.19
4 2.16 2.24 1.10 1.00 2.04 1.26 1.22
5 2.59 2.65 0.84 0.78 no trade 0.73 0.73
6 3.11 3.16 0.20 0.14

CIT2 1 1.25 1.45 1.24 1.04 1.66 1.26 1.04
2 1.50 1.43 1.24 1.13 1.67 1.26 1.15
3 1.80 1.75 1.09 1.00 1.51 1.25 1.25
4 2.16 2.20 0.85 0.81
5 2.59 2.58 0.55 0.55

CIT3 1 1.25 1.71 1.25 1.04 1.75 1.25 1.04 1.65 1.17 1.04
2 1.50 1.75 1.24 1.09 1.77 1.25 1.14 1.36 1.16 1.12
3 1.80 1.71 1.22 1.15 1.73 1.22 1.22 1.68 0.86 0.86
4 2.16 2.21 0.91 0.90 2.02 0.09 0.09
5 2.59 2.69 0.25 0.25

CIT4 1 1.25 2.05 1.36 1.04 1.94 1.31 1.04 1.84 1.21 1.04
2 1.50 1.94 1.37 1.12 1.82 1.31 1.15 1.40 1.21 1.15
3 1.80 1.96 1.36 1.21 1.70 1.31 1.26 1.34 1.08 1.08
4 2.16 2.15 1.34 1.30 2.04 0.98 0.98
5 2.59 2.12 0.80 0.80
6 3.11 2.47 0.08 0.08

CIT5 1 1.25 2.08 1.38 1.04 1.83 1.24 1.04 1.44 1.15 1.04
2 1.50 2.02 1.38 1.14 1.67 1.24 1.14 1.49 1.15 1.14
3 1.80 2.00 1.38 1.26 1.25 1.19 1.19 1.07 0.18 0.18
4 2.16 2.01 1.35 1.34
5 2.59 2.31 0.28 0.28

CIT6 1 1.25 2.04 1.41 1.04 1.83 1.28 1.04 1.66 1.20 1.04 1.46 1.12 1.04
2 1.50 1.98 1.42 1.13 1.72 1.28 1.13 1.56 1.20 1.12 1.32 1.08 1.08
3 1.80 2.05 1.42 1.24 1.71 1.28 1.25 1.54 1.11 1.11
4 2.16 2.15 1.41 1.35 1.66 0.82 0.82
5 2.59 2.57 1.04 1.04

CIT7 1 1.25 1.75 1.38 1.04 1.76 1.30 1.04 1.66 1.21 1.04
2 1.50 1.73 1.38 1.14 1.78 1.30 1.14 1.45 1.21 1.14
3 1.80 1.77 1.38 1.26 1.85 1.30 1.25 1.45 1.02 1.01
4 2.16 1.77 1.21 1.14 1.88 0.96 0.96 1.75 0.27 0.27
5 2.59 2.41 0.97 0.97
7 1.25 1.94 1.53 1.10

EPFL 2 1.50 1.71 1.56 1.20
3 1.80 1.99 1.56 1.27
4 2.16 2.27 1.54 1.34
5 2.59 2.64 1.48 1.38
6 3.11 3.00 1.27 1.27
7 3.73 3.73 0.06 0.06

UU1 1 1.25 1.94 1.40 1.04 1.91 1.39 1.04 1.88 1.32 1.04
2 1.50 2.01 1.41 1.13 1.95 1.39 1.13 1.91 1.32 1.14
3 1.80 1.95 1.40 1.20 1.96 1.39 1.24 1.90 1.32 1.25
4 2.16 1.95 1.37 1.28 2.11 1.38 1.34 1.53 1.12 1.12
5 2.59 1.95 0.95 0.88 1.99 0.75 0.75
6 3.11 1.95 0.76 0.76

UU2 1 1.25 1.72 1.44 1.04 1.83 1.33 1.04 1.56 1.19 1.04
2 1.50 1.77 1.44 1.14 1.74 1.34 1.14 1.39 1.19 1.14
3 1.80 1.77 1.44 1.24 1.67 1.34 1.25 1.39 0.96 0.96
4 2.16 1.99 1.41 1.32 1.48 1.22 1.22
5 2.59 2.37 1.09 1.06
6 3.11 2.82 0.50 0.50

UU3 1 1.25 1.67 1.24 1.04 1.66 1.18 1.04 1.18 1.15 1.04
2 1.50 1.52 1.23 1.13 1.54 1.16 1.09 1.40 1.13 1.11
3 1.80 1.75 1.16 1.13 1.74 1.02 1.02 1.45 0.52 0.52
4 2.16 2.07 0.62 0.62
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Table VII

Return from buying one ticket at average trade prices in round 1 and selling at
average trade prices in the round when the face value increased above the

purchase price.

Experiment Replication 1 Replication 2 Replication 3 Replication 4

CIT1 0.14 0.09
CIT2 -0.02 -0.09
CIT3 0.00 -0.01 0.02
CIT4 0.05 0.05 -0.25
CIT5 -0.04 -0.35 0.04
CIT6 0.05 -0.09 -0.07 -0.09
CIT7 0.01 0.05 -0.12
EPFL 0.17
UU1 0.01 0.10 -0.19
UU2 0.03 -0.19 -0.11
UU3 0.05 0.05 0.18

Sharpe Ratio 0.67 -0.27 -0.43 NA
Skewness 1.13 -1.24 0.59
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Table VIII

Bubble duration and effective value regressions (t statistics in parentheses)

Dep. Var. Av. Round 1 Replication Participants Short Sell Utah
Price Number Number Dummy Dummy

Duration Coef. 1.0023 -0.8953 0.1212
t-stat (1.4579) (-6.0982) (3.2442)

Coef. 1.0969 -0.8780 0.1190 -0.1033 0.2288
t-stat (1.5270) (-5.6821) (2.7779) (-0.3303) (0.7722)

Effective Coef. 0.2327 -0.0439 0.0058
Value t-stat (4.4388) (-3.9233) (2.0371)

Coef. 0.2363 -0.0460 0.0086 0.0345 0.0204
t-stat (4.8498) (-4.3874) (2.9538) (1.6263) (1.0133)
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Table IX

Experimental sessions where participants self-selected from of an introductory finance

class pool: Transaction prices (“Trade”), face values (“Face”), intrinsic values (“INT”),

as well as effective remaining values (“EFF”), per round. Numbers in parantheses are

average transaction prices for trading round following announcement of liquidation.

Date Variable Round
Time 1 2 3 4 5 6 7 8 9

(All) Face 1.25 1.5 1.8 2.16 2.59 3.11 3.73 4.48 5.37
Nov 1 11 Trade 1.71 1.80 1.82 1.92 2.03 (1.93)
4pm INT 1.30 1.43 1.57 1.66 1.43

EFF 1.72 1.72 1.75 1.74 1.43
Nov 1 11 Trade 1.91 N.A. 1.78 N.A. 1.87 (1.93)
4:30pm INT 1.30 1.43 1.57 1.65 0.32

EFF 1.68 1.68 1.69 1.65 0.32
Nov 1 11 Trade 1.88 1.93 1.92 2.15 (2.42)
5pm INT 1.30 1.44 1.55 1.36

EFF 1.55 1.58 1.61 1.36
Nov 2 11 Trade 1.90 1.95 2.09 2.08 2.08 2.76 (2.02)
4pm INT 1.30 1.43 1.57 1.70 1.06 1.17

EFF 1.77 1.77 1.78 1.78 1.17 1.17
Nov 2 11 Trade 2.28 2.13 2.12 2.44 2.55 2.95 NA NA (2.77)
4:30pm INT 1.30 1.43 1.57 1.71 1.75 1.35 0.81 0.53

EFF 1.93 1.93 1.93 1.94 1.88 1.44 0.85 0.53
Nov 2 11 Trade 2.35 2.18 1.94 2.05 2.48 3.05 3.35 3.85 (2.77)
5pm INT 1.30 1.43 1.57 1.67 1.60 1.38 0.91 0.69

EFF 1.84 1.85 1.87 1.89 1.77 1.48 0.97 0.69
Nov 16 11 Trade 2.04 1.90 2.01 2.29 2.92 NA (1.95)
4pm INT 1.13 1.43 1.57 1.70 1.83 1.53

EFF 1.92 1.92 1.92 1.93 1.92 1.53
Nov 16 11 Trade 2.05 2.05 2.16 2.24 2.51 3.15
4:45pm INT 1.30 1.43 1.57 1.73 1.89 1.27

EFF 1.93 1.95 1.95 1.95 1.95 1.27
Nov 16 11 Trade 2.15 2.20 2.30 2.47 2.65 2.96 3.62 4.41 (3.30)
5:30pm INT 1.30 1.46 1.59 1.67 1.72 1.84 1.22 1.22

EFF 1.96 1.98 2.03 2.05 2.01 1.98 1.32 1.22
Nov 26 11 Trade 2.57 2.62 2.51 2.50 2.44 2.56 (2.12)
10:00am INT 1.30 1.43 1.57 1.71 1.88 1.19

EFF 1.91 1.91 1.93 1.93 1.93 1.19
Nov 26 11 Trade 2.50 2.51 2.48 2.32 2.39 2.89 3.24 (2.00)
11:00am INT 1.30 1.43 1.57 1.71 1.36 0.82 0.90

EFF 1.82 1.82 1.82 1.82 1.46 0.90 0.90
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Table X

Experimental sessions where participants self-selected from of an introductory finance

class pool: Return from buying one ticket at average trade prices in round 1 and either

cashing in the round when the face value increased above the purchase price (“Cash-In”)

or selling at average trade prices in the round when the face value increased above the

purchase price (“Selling In Market”). Sharpe ratio of investment strategy and skewness

of the distribution of returns is shown in the last two rows.

Date-Time Return (in percentage)
Cash-In Selling In Market

Nov 1 11 4pm 5.06 6.37
Nov 1 11 4:30pm 12.98 -2.35
Nov 1 11 5pm -67.32 14.06
Nov 2 11 4pm 13.49 9.28
Nov 2 11 4:30pm 13.80 12.04
Nov 2 11 5pm 10.12 5.29
Nov 16 11 4pm 5.87 11.90
Nov 16 11 4:45pm 5.14 9.03
Nov 16 11 5:30pm 0.31 14.78
Nov 26 11 10:00am 0.78 -5.06
Nov 26 11 11:00am 3.68 -4.19
Sharpe Ratio 0.02 0.89
Skewness -3.05 -0.65
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