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Abstract

We study the impact of delegated portfolio management on asset pricing

in a large-scale experimental setting. With a few exceptions, models of asset

pricing are formulated in terms of the preference functions of final investors.

This effectively assumes that adding a layer of management does not affect

market equilibrium. In early rounds of our experiments, delegation indeed

has no impact on pricing; we replicate CAPM pricing as in earlier experi-

ments without delegation. Choices are also in line with prior evidence. CAPM

pricing fails in later rounds, however, and we even observe a negative equity

premium. We attribute this to fund flows. Investors tend to increase allo-

cations to managers who performed well in the past (not just the previous

period). Moreover, fund flows implicitly reflect a reward for variance. As a

result, funds become concentrated with a few managers, and the aggregation

of deviations of individual manager demands from mean-variance optimality,

needed to ensure CAPM pricing, no longer obtains. Given the predominance

of delegated investing in actual equity markets, our results have important

implications for asset pricing theory.

JEL Classification: G11, G12
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1 Introduction

The fundamental CAPM papers of Sharpe [1963] and Lintner [1965] that laid the

groundwork for modern asset pricing began with the assumption that investors made

their own investment decisions. This assumption was motivated, in part, to allow for

the derivation of a closed form asset pricing model. However, at the time the CAPM

was being developed, the assumption that final investors made investment decisions

was not only theoretically useful, it was empirically accurate. That is no longer the

case.

To provide some historical perspective, Bogle [2005] notes that as late as in 1950

American households held 91% of all common stocks. French [2008] reports that by

1980 direct holdings by final investors accounted for only 47.9% of the market and by

2007 that figure had fallen to 21.5%. Furthermore, estimates of direct holdings over-

state the importance of individual investors because many wealthy individuals are

classified as individual investors even though they delegate most of their investment

decision making to financial firms or private investment advisers. In addition, less

wealthy individual investors often rely on stockbrokers, financial planners, or other

advisers, when making investment decisions, even when the investment account is in

their name.

Given the dramatic increase in the importance of delegated investing, it is sur-

prising that the impact of delegation on asset pricing has not been more thoroughly

investigated. Instead of studying the effect of delegation, efforts to overcome the

empirical failures of early asset pricing models have focused on two alternatives.

The first is to retain the rational valuation framework, but to build models based

on increasingly sophisticated assumptions regarding the stochastic processes of re-

turns and investor preference functions. Contributions in this regard include Breeden

[1979], Grossman and Shiller [1981], Hansen and Singleton [1983], Campbell [1996],

Constantinides and Duffie [1996] and Campbell and Cochrane [1999], among many

others. The second alternative has been to abandon the rational framework and

develop “behavioral models” based on various psychological theories. Lacking a spe-

cific theoretical framework, a wide variety of behavioral theories have been developed.

Fama [1998] provides a critical review of this literature. Barberis and Thaler [2002]

offer a more recent, and more favorable, survey. It is somewhat ironic that the behav-

ioral approach largely ignores a central aspect of investment behavior—delegating

security selection to professionals.

There are strands of literature that have looked at the problem of delegated



investing. The most extensive involves the application of principal-agent theory to

study various hypothetical manager-agent contracts. The early seminal paper in that

respect is Bhattacharya and Pfleiderer [1985]. Since then, important contributions

include Stoughton [1993], Admati and Pfleiderer [1997], Ross [2004] and Dybvig

et al. [2004].1 From the perspective of the current research, this literature has two

deficiencies. First, it is largely formal and theoretical and does not tie the models

to the actual process of delegated investing observed in the capital market. Second,

and more importantly, it does not derive the implications of the delegation process

for asset pricing.

There are also papers that analyze the theoretical optimal strategies for individual

managers compensated relative to the amount of funds under management, but,

again, without considering asset pricing implications. These include Basak, Pavlova,

and Shapiro [2007] and Hugonnier and Kaniel [2010].

There is a second smaller literature that does attempt to assess the impact of

delegated investing on asset prices. An early contribution is Brennan [1993]. More

recently, Cornell and Roll [2005] study how the CAPM is affected when the model is

extended to allow for delegated investing. They show that, with no other alterations,

introducing delegation has a significant impact on the form of the CAPM that can

potentially explain various failings of the original model. Unfortunately, because

so little is known about the actual delegation process, papers like Cornell and Roll

are forced to rely on stylized assumptions regarding the manner in which delegation

occurs.

One approach that has not been tried is to study the impact of delegation in

a laboratory setting. This is surprising because experiments could provide useful

way to study delegated portfolio management and its effect on asset pricing. Un-

like field data, the experimenter can control many of the variables that are crucial

for understanding financial markets, such as total supplies, information, contractual

agreements, enforcement of contracts, etc. Indeed, it is only under experimental con-

ditions that CAPM pricing has ever been observed (see Bossaerts and Plott [2004])

and that it has been shown why CAPM pricing may obtain even if no-one chooses to

hold the market portfolio (see Bossaerts et al. [2007]). This raises the obvious ques-

tion of whether the CAPM would continue to hold if managers were introduced into

the experiments. As experiments allow one to control the exact contract between

“investor-subjects” and “manager-subjects,” as well as the flow of information be-

1Stracca [2005] provides a comprehensive survey of this literature.
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tween the two groups, in principle, experiments could also provide important insights

about the impact of contracts on asset prices and fund composition.

The present paper provides a first step towards the experimental analysis of dele-

gated portfolio management. It presents the results of a baseline experiment against

which general equilibrium effects of incentives (contract design) on performance,

prices and choices could be studied. Specifically, it reports on an experiment that

was set up in exactly the same way as earlier experiments that have reliably generated

CAPM pricing (see earlier references), with one exception: subjects do not trade for

their own account, but for the benefit of other subjects. The investor-subjects (the

investors) are endowed with assets and cash and allocate those to manager-subjects

(the managers). The initial asset allocations to different managers determine the

investors’ shares in the funds. The managers can then trade the assets allocated

to them in an anonymous electronic open-book market within a pre-specified time

period and thus rebalance their initial allocations. When trading concludes each in-

vestor is paid his share (possibly zero) from the liquidating value of each manager’s

portfolio, while the managers receive payments for order flow. Basic performance

metrics are then reported, investors are given new batches of endowments and in-

vited to allocate them to the managers. This process is repeated eight times in the

experiment.

The question we aim to answer is whether adding the layer of delegated man-

agement to the economy affects market equilibrium. Two conjectures immediately

arise. On the one hand, since our experimental setup is based on the simplest pos-

sible management contract design, it is plausible to argue that portfolio delegation

should have no effect on asset prices or holdings. All managers have equal infor-

mation, and, barring unequal trading skill, there is no reason to believe that one

manager could outperform the others. Assuming mean-variance preferences for the

investors, managers should all choose portfolios on the mean-variance frontier, and

the investors should choose to invest in sets of managers as to achieve their optimal

portfolios.

On the other hand, we know that the driving force behind the empirical success

of the CAPM in earlier experiments (Bossaerts et al. [2007]), where subjects trade

for their own account, is the structure of the individual demands. While portfolio

holdings are quite erratic, choices reflect demands that deviate from mean-variance

optimality only because of a mean-zero error term. Evidently, this error term is

independent across subjects and therefore the functional law of large numbers holds,
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which is why CAPM pricing obtains – provided (by experimental design) there are

enough subjects who all have an endowment that is small relative to the market as a

whole. In our experiment, however, while the experimenter controls the endowments

of the investors, the endowments of the managers are endogenously determined. It

is therefore plausible to argue that the erratic nature of portfolio choices could cause

some managers to outperform others by pure chance. If investors struggle to decide or

are indifferent as to how to allocate their assets and cash across managers, a natural

way to resolve their indecisiveness/indifference would be to choose to distribute their

endowment among the managers who happen to have the best past performances.

This way, investors would also hedge against the possibility that the managers ac-

tually outperformed because of skill. But if many investors choose to do so, those

managers’ funds will be large relative to the market, and their individual demands

will eventually influence prices, unless they happen to hold an exact mean-variance

optimal portfolio, a rather unlikely event in view of the past evidence. As a result,

CAPM pricing would no longer obtain.

To address the research question in general, and the developed conjectures in

particular, we design and analyze the experiment with the theoretical benchmark

model (that corresponds to our setting but in the absence of delegated investment)

in mind. Because the predictions of this model have been experimentally tested and

confirmed, our analysis is also a comparison against previous experimental results.

The following provides a succinct description of our findings. Overall, we find

that our experimental results depart from the predictions of standard asset pricing

models and from the established results in the experimental asset pricing literature.

Specifically, in early rounds, investors indeed allocate their shares and cash so that

managers effectively receive the same initial endowments. Despite rather erratic

holdings at the end of trading, CAPM pricing obtains. After the third round, how-

ever, most managers performed poorly (because the market portfolio’s payoff was at

its lowest realization) except for a few managers who had shorted the market. In

subsequent rounds, these successful managers received increasingly large allocations

of assets and cash – with funds concentration reaching a peak when four out of the

32 Managers were given 40% of the available assets and cash. In general, we find

a correlation of 0.66 between managers’ cash distributions back to investors in the

previous period and the cash and assets flows back to them in the subsequent pe-

riod. Managers with large fund flows in a given period are more likely to have large

fund flows in the following period as well, a finding that does not disappear when
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taking into account past performance. Thus, there seems to be “stickiness” in fund

flows, a surprising finding provided that mangers’ portfolios are “liquidated” after

the conclusion of each period and new distributions are made in the next period

(thus, unlike the justification for the similar finding in the field, the stickiness cannot

be driven by investors keeping funds with a set of managers by default). Moreover,

investors do not appear to use mean-variance as a criterion in choosing fund man-

agers. Although they are not given direct information about the expected return and

variance of managers’ portfolios, investors are given sufficient information to closely

approximate those statistics. We find that the fund flows to a manager depend

positively (and significantly) on the manager’s portfolio variance in the preceding

period and negatively (but not significantly) on the portfolio’s expected return. As

expected from the above described investor behavior, as the funds allocated to a

handful of managers grow, so does the mispricing relative to the theoretical bench-

mark (CAPM). As a matter of fact, the equity premium becomes negative as the

funds concentration reaches its highest levels. In particular, the market share of

the largest manager is significantly positively correlated with the mispricing in the

market (as measured by the difference of the Sharpe ratio of the market portfolio

from the Sharpe ratio of the mean-variance optimal portfolio). Our results indicate

that it is the market share of the largest manager that has a first order effect on the

quality of prices while the general segmentation of the markets into large and small

funds (as measured by the Gini index) has only marginal effect on prices.

In summary, our results imply that delegation cannot be ignored when attempting

to understand market equilibrium and asset pricing, and suggest a reason for the

observed discrepancy between the predictions of the standard asset pricing models

and the experimental findings, namely, the nature of flows in and out of funds.

The remainder of this paper is organized as follows. Section 2 presents our ex-

perimental design. Section 3 presents the empirical results and section 4 concludes.

2 Experimental Setup

The experiment consists of a multi-period main session followed by a one-period

concluding session which we call “the end session.” The purpose of the end session,

described in detail in subsection 2.4, is to eliminate possible end-of-game effects

during the main session. In what follows, we outline the design of the main session.

The main session is conducted in a series of six week-long periods, each of which
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is comprised of three stages, called Asset Allocation (first stage), Trading (second

stage), and Information Disclosure (third stage). Individuals who participate in the

trading are called managers. The 32 managers are the same individuals over all

periods. A separate group of participants, called investors, are the initial owners of

assets and cash. The investors need not be the same individuals each period and

their number (equal to 70 on average) can possibly change. Investors receive their

endowments in the beginning of each period. Their endowments consist of units of

two risky assets, called A and B, and some cash. The assets are risky because their

end-of-period liquidating dividends (in US dollars) depend on the realization of a

random state variable that can take on three values, called X, Y , and Z. Investors

cannot buy, sell or store assets directly, thus in the beginning of each period they

must assign all of their initial resources to one or more of the managers to trade on

their behalf. The allocations from different investors to one manager constitute this

manager’s initial (for that period) portfolio. The fraction of this initial portfolio’s

expected dividend that is due to a single investor is this investor’s share in the

manager’s fund. A managers’ initial portfolio is the sole determinant of her current

period payoff. Specifically, the payoff is equal to 40% of the expected dividend of her

initial portfolio. We refer to this payoff as the manager’s fee.

The allocation of assets from investors to managers constitutes the first stage of

a period. Managers (only) then participate in the trading stage that lasts exactly

thirty minutes. Trade takes place through a web-based, electronic continuous open-

book limit order system called jMarkets.2 A snap shot of the trading screen is

provided in Figure 1. During this stage managers may trade their initial portfolio

to a new, final portfolio. To facilitate borrowing, in addition to trading securities A

and B, managers can trade a risk-free security called a “Bond.” The Bond pays an

end-of-period dividend of $1 in any state of the world and is in zero net supply.

The final portfolio of a manager generates a dividend according to the random

realization of a state variable, that becomes known only after the conclusion of

trading. The dividend, with the management fee subtracted from it, is distributed

to the investors according to their shares in the fund. If this residual dividend is

negative, the distribution to the investors is equal to $0.

2This open-source trading platform was developed at Caltech and is freely available under the
GNU license. See http://jmarkets.ssel.caltech.edu/. The trading interface is simple and intuitive.
It avoids jargon such as “book,” “bid,” “ask,” etc. The entire trading process is point-and-click.
That is, subjects do not enter numbers (quantities, prices); instead, they merely point and click to
submit orders, to trade, or to cancel orders.
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The third and final stage of a period is the information disclosure stage. In

this stage a series of performance indicators for each manager are published on the

experimental webpage3 and the university newspaper. The details of the information

disclosed are presented in subsection 2.3. Except for the information about past

periods and the fact that managers are always the same, the weekly periods are

otherwise independent events. The timing of the three stages during the week-long

period is presented in Table 1

As described in the start of this section, in order to avoid any last-period effects

in the managers’ behavior, the design includes one concluding period. In this period,

instead of being paid 40% of the expected dividend of their initial portfolio, managers

are paid 40% of the realized dividend of their final portfolio. The remaining 60% are

distributed to the investors according to their shares in the fund.4

The following subsections give more detail about payoffs and trading rules, as

well as about the disclosed information.

2.1 Trading: Assets and Dividends

Table 2 summarizes the dividends of assets A, B, and the Bond, expressed in US

Cents. In each period the three payoff relevant states, X, Y, and Z, are equally likely

and this is known to both managers and investors.

According to their initial endowment, there are two types of investors. An investor

of type A holds 100 units of asset A, and $6 of cash, while investor of type B holds

70 units of asset B, and $9 of cash. The managers do not have initial endowments.

The market portfolio is the aggregate endowment of assets A and B. Because the

total number of investors as well as the fraction of investors of each type varies from

one period to the other, the composition of the (per capita) market portfolio also

varies across periods. Table 3 provides period by period details on the distribution of

investor types and the corresponding market portfolio composition. Table 4 presents

the market portfolio and the corresponding state-dependent aggregate wealth for

each of the six periods. As evident from the table, the market portfolio changed

3The experimental webpage’s URL is http://clef.caltech.edu/exp/dp. In addition to all infor-
mation disclosures, the webpage contains the experimental instructions for the Managers and the
Investors.

4The initial design included eight periods followed by the concluding period. While we conducted
eight periods, we report the results only of the first six due to an error that caused incorrect reporting
in the information disclosure stage. Thus, in effect the concluding period’s purpose of eliminating
possible last-period effects in the managers’ behavior was fulfilled by periods VII and VIII, which
are now excluded from the data analysis.
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from one period to the next, with changes primarily due to changes in the aggregate

supply of security A.

In the asset allocation process, an investor can only choose the number of units of

his risky asset (A or B, depending on the investor’s type) to allocate to each manager.

If a manager is allocated a fraction of an investor’s risky portfolio, the same fraction

of the investor’s cash is also allocated to that manager. Investors distribute holdings

to managers using a form over the Internet. Before trading starts, each manager

knows her initial portfolio but not the portfolios of the other managers.

In the trading stage, in addition to the two risky assets, managers can also trade

a risk free security called Bond. Given cash, it is a redundant security. However,

managers are allowed to short sell the Bond if they wish. Short sales of the Bond

correspond to borrowing. Managers can thus exploit such short sales to acquire assets

A or B if they think it is beneficial to do so. Managers are also allowed to short

sell the risky securities, in case they think they are overpriced. To avoid bankruptcy

(and in accordance with classical general equilibrium theory), our trading software

constantly checks subjects’ budget constraints. In particular, a bankruptcy rule is

used to prevent managers from committing to trades that would imply negative cash

holdings in the end of the period. Whenever a manager attempts to submit an

order to buy or sell an asset, her cash holdings after dividends are computed for

all states of the world, given her current asset holdings and her outstanding orders

that are likely to trade (an order is considered likely to trade if its price is within

20% of the last transaction price), including the order she is trying to submit. If

these hypothetical cash holdings turn out negative for some state of the world, she

is not allowed to submit the order. However, in trading sessions where prices change

a lot, it is possible that orders that originally passed the bankruptcy check (by not

being considered likely to trade) go through while at the same time they no longer

guarantee non-negative total payoffs. Thus, some rates of return can be below -100%

in volatile periods.

2.2 Payoffs

Below we formalize the payoff functions for the investors and managers in the main

experiment.

In the set, I, of investors, let IA (IB) be those of type A (B) and let wA (wB)

and hA (hB) denote their individual initial endowments of assets and cash. Let

di = (d1i , . . . , d
32
i ) denote investor i’s distribution of his initial asset endowment among
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the 32 managers. The initial portfolio of manager j is composed of mj
A units of asset

A, and mj
B units of asset B, where

mj
A =

IA∑
iA=1

djiA , mj
B =

IB∑
iB=1

djiB .

Manager j’s initial cash holding is

hj =

IA∑
iA=1

djiA
wA

hA +

IB∑
iB=1

djiB
wB

hB.

Letting D̄A (D̄B) denote the expected dividend of asset A (B), the expected

dividend of manager j’s initial portfolio is D̄j
(
mj

A,m
j
B, h

j
)

= D̄Am
j
A + D̄Bm

j
B + hj.

Manager j’s payoff is 40% of the expected dividend of her initial portfolio. That

is,

Payj = 0.4× D̄j
(
mj

A,m
j
B, h

j
)
. (2.1)

Also, if D̄j
i is the expected dividend resulting from investor i’s contribution to

manager j, then D̄j
i = (D̄A(B) +

hA(B)

wA(B)
)dji for i ∈ IA(IB). Consequently, investor i’s

share in fund j is defined as

sji =
D̄j

i

D̄j
. (2.2)

Given her initial portfolio
(
mj

A,m
j
B, h

j
)
, manager j can trade to a final portfolio,

denoted
(
m̃j

A, m̃
j
B, h̃

j
)

.5 The final holdings and the realized state of the world,

x ∈ {X, Y, Z} determine manager j’s realized dividend, Πj, as follows:

Πj
(
m̃j

A, m̃
j
B, h̃

j;x
)

= DA (x) m̃j
A +DB (x) m̃j

B + h̃j,

where Dg (x) denotes the dividend of asset g ∈ {A,B} in state of the world x.

Manager j’s residual dividend is max(Πj − Payj, 0), i.e. it is the positive part

of the realized dividend of manager j after her “fees” (Payj) are subtracted from

it. Investor i’s payoff from manager j equals his share in this manager’s residual

dividend, i.e., it is equal to sji max (Πj − Payj, 0).

Investor i’s total payoff is the sum of his payoffs from all managers, as given

5h̃j includes both cash and bond holdings (the dividend on the Bond is always $1).
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in the expression below:

Payi (x) =
32∑
j=1

sji

[
max(Πj

(
m̃j, h̃j;x

)
− Payj, 0)

]
. (2.3)

2.3 Disclosure of Information

As pointed out in Table 1, the trading always took place on a Tuesday. Indicators of

managers’ performance were published online on the following Friday and appeared in

the newspaper (The California Tech) on the following Monday. To preserve the pri-

vacy of the participants in the experiment, all managers were assigned experimental

names and all announcements were made under those names. The names were Albite,

Alexandrite, Allanite, Alunite, Amazonite, Amblygonite, Amosite, Andalusite, An-

thophyllite, Atacamite, Barite, Bassanite, Beidellite, Bementite, Bentonite, Bertran-

dite, Biotite, Birnessite, Bloedite, Boracite, Calcite, Carnallite, Celestite, Chalcopy-

rite, Chlorite, Colemanite, Cornadite, Cristobalite, Cryolite, Dolomite, Dumortierite,

and Dunite.

In addition to announcing the four performance indicators (specified below) for

all managers, we also announced them for the Dow-tech Index composed of one unit

of asset A, one unit of asset B, and $1. The following indicators were reported:

Returns, Market Share6, Residual, and Risky Share. In what follows we describe

these indicators in detail.

Given prices p = (pA, pB, 1) for assets A, B and the Bond (using the Bond as the

numeraire), the value, V j, of manager j’s initial portfolio is defined as

V j
(
mj, hj; p

)
= pAm

j
A + pBm

j
B + hj.

In continuous markets as the one in our trading sessions, assets are traded at many

different prices. In computing the valuations V j, we take p to be the average prices

over the last five minutes of trading in a period.

Return. This measure captures the realized rate of return for manager j when

the state of the world is x and the average trading price is p. Namely,

rj =
Πj
(
m̃j, h̃j;x

)
− V j (mj, hj; p)

V j (mj, hj; p)
. (2.4)

6The Market Share indicator was called Volume in the published reports.
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Market Share. This measure is meant to capture the size of mutual fund j. It

is equal to the ratio of the expected dividend of manager j’s initial portfolio and the

expected dividend of the portfolio comprised of all assets and cash available to all

investors. Specifically,

msj =
D̄j (mj, hj)∑32
k=1 D̄

k (mk, hk)
. (2.5)

Residual. The residual for manager j is the residual dividend as defined in

Subsection 2.2,

max(Πj − Payj, 0). (2.6)

Risky Share. This measure for mutual fund j equals the value of the risky

portion of j’s final portfolio.

νj =
pAm̃

j
A + pBm̃

j
B

pAm̃
j
A + pBm̃

j
B + h̃j

, (2.7)

where p is again taken to be the average price for the last five minutes of trade in a

period.

2.4 End Session

The experiment concluded with an additional pseudo-period. This period was like

the periods of the main session in all except the managers’ and investors’ payoffs.

As in the main sessions, investors made their distributions of assets among managers

and managers participated in a 30-minutes trading period. However, each manager

received a payoff (fee) equal to 40% of the dividend generated by her final portfolio.

Investors were paid the sum of their share of each manager’s realized dividend after

the manager’s fee. In other words, manager j’s payoff in the end session equaled 0.4×
Πj
(
m̃j, h̃j;x

)
in state x. Investor i’s payoff equaled

∑32
j=1 s

j
i

[
0.6× Πj

(
m̃j, h̃j;x

)]
.

The end session was implemented to prevent the unraveling of managers’ repu-

tation considerations. Namely, in the absence of the end session, in the last period

of the main session managers have no reputation reason to perform in a way as to

attract more investors into their fund. However, due to a programming error in re-

porting managers’ returns we use only the first six of the original eight periods in the

main experiment for our analysis. Thus, in effect the concluding period’s purpose

of eliminating possible last-period effects in the managers’ behavior was fulfilled by

periods VII and VIII, which are now excluded from the data analysis.
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3 Results

The question we aim to answer is whether adding the layer of delegated management

to the economy affects market equilibrium. We approach the problem from two

angles. First, we compare our experimental results to the the predictions of the

theoretical benchmark model that corresponds to our setting but in the absence of

delegated investment. Second, we compare our results to experimental evidence from

frameworks analogous to ours in all other respects but the delegation.

The two main indicators we consider are:

1. State-price probabilities. According to standard asset pricing with complete

markets (see Arrow and Debreu [1954]), the ratios of state prices (the prices

of the canonical Arrow-Debreu claims) and state probabilities, called state

price-probability ratios, should be inversely related to the aggregate wealth in

the corresponding states. This is a weak test of the predictions of equilibrium

models of asset prices, and a very useful one since it assumes only that investors

be risk averse. The aggregate wealth and the probability of each state are

design variables, thus known to the experimenter. Subjects do not trade state

securities, but we can infer state prices from the prices of the traded securities

because markets are complete.

2. Sharpe ratio differences. The Sharpe ratio of a portfolio is the ratio of

the mean rate of return of the portfolio in excess of the risk-free rate, divided

by the standard deviation of the portfolio return. The Capital Asset Pricing

Model (CAPM, see Sharpe [1963], Lintner [1965], Mossin [1966]) predicts that

in equilibrium the maximal Sharpe ratio is that of the market portfolio. (A

caveat for using CAPM as a theoretical benchmark is that it assumes that

the utilities of market participants have a mean-variance form, or are closely

approximated by it.7) Thus, a commonly used measure of distance between

market prices and their theoretical counterpart is the Sharpe ratio difference,

equal to the difference between the maximal Sharpe ratio under those prices

and the Sharpe ratio of the market portfolio. If the CAPM holds, this difference

should be zero. The data on the trading prices of the assets and the asset’s

7Because of the limited amount of risk in the laboratory, the CAPM is a suitable theoretical
benchmark. Indeed, the CAPM is universally valid when risks are small, even if some of the
assumptions usually made to derive the CAPM (normality; quadratic utility) are violated (Judd
and Guu [2001]). Bossaerts et al. [2007] demonstrate that preferences of the mean-variance form
provide a good representation of subjects’ behavior in market experiments without delegation.
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liquidating dividends is used to compute the rate of return and the standard

deviation, and therefore the Sharpe ratio, of any portfolio.

The CAPM, and any asset pricing model for that matter, makes strong predic-

tions about equilibrium allocations across states. While in empirical research allo-

cations tend to be ignored, they play a central role in the analysis of experimental

data. In experiments without delegation the result is that while the market portfolio

is mean-variance optimal, individual investors do not actually hold mean-variance

optimal portfolios. Despite erratic behavior of individual traders, in those experi-

ments CAPM is obtained in the aggregate. That is, individual demands are merely

perturbations of mean-variance demands, and in the aggregate, investors demand a

mean-variance optimal portfolio.

It is against this backdrop that we consider the data from our main experiment.

3.1 Data Description

The data collected during the experiments consists of two parts – one for the investors

and one for the managers. For each investor we collect his asset distribution to

the 32 managers. For the managers, the data consists of their initial portfolios, all

individually posted orders and cancelations along with the resulting transactions and

the transaction prices for assets A, B and the Bond. Figure 2 displays the evolution

of transaction prices for the three assets in the six main session periods. Time is on

the horizontal axis (in seconds). Horizontal lines indicate the expected dividends of

the risky assets. Each star is a trade. On average there are 3200 transactions per

period, or about 2 transactions per second. Table 5 presents the trading volume and

the turnover for each asset in the six trading periods. As apparent from the table,

the trading activity in each of the securities increased as the periods advanced, with

the increase being more pronounced in security B, which was the security with more

stable aggregate supply across periods.

The performance indicators that we report each week (in the university newspaper

and on the experimental web page) are readily computed from the data at hand.

Table 6 reports the Return indicator values for all managers in all periods. Table 7

reports the Market Share indicator values, table 8 reports the Residual values, while

table 9 contains the values of the Risky Share indicator.
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3.2 Theoretical Benchmark Comparison

3.2.1 Asset Prices

We first turn to evaluating the pricing quality in the markets across periods. The

Arrow-Debreu asset pricing model makes predictions about state prices. Because

we have complete markets, given the prices of the traded assets, we can readily

compute the state prices (and therefore the ratio of the state prices and the state

probabilities). According to the theory, the state price probability ratios should be

inversely related to the aggregate wealth in the corresponding state. That is, the

state with the lowest aggregate wealth should be the most expensive relative to its

probability. In this experiment (as evident from Table 4), the state with the lowest

aggregate payoff was always X. Conversely, the state with the highest aggregate

wealth should have the lowest state price probability ratio. In all periods the highest

payoff state was Y . Thus, the Arrow-Debreu model predicts that in all periods the

state price probability ratio for state X should be the highest, followed by that for

state Z, and the ratio should be the lowest for state Y .

We compute the state prices every time a transaction occurs (taking the prices

for the non-transacted securities to be equal to their last transaction prices). Figure

3 presents the evolution of state price probabilities in each of the periods. As evident

from the figure, in the first half of the experiment, the data provide overall support

for one of the most fundamental principles of asset pricing, namely, that state price

probability ratios should be ranked inversely to aggregate wealth. However, starting

from period IV, the ranking of state price probabilities is violated and largely remains

such until the end of the experiment. Figure 4 presents the state price probabilities

computed at the average prices over the last five minutes of trading (i.e., for each

period and each state there is a single state price probability ratio). The average

values confirm that indeed in period IV and V there are gross violations in state price

probability rankings, with state X carrying the lowest value and state Y carrying

the highest.

An alternative way to view the performance of the experimental markets in re-

lation to asset pricing theory (without delegation) is to evaluate the Sharpe ratio

differences between the market portfolio and the mean-variance optimal portfolio.

In particular, the CAPM predicts that the market portfolio should be mean-variance

optimal, or equivalently that the Sharpe ratio of the market portfolio be maximal.

In each period, we compute the Sharpe ratio difference every time a transaction oc-

curs. Figure 5 presents the evolution of the market portfolio’s Sharpe ratio difference
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from the Sharpe ratio of the mean-variance optimal portfolio in the six periods of

the experiment. The results from the Sharpe ratio evaluation are consistent with the

result of the state-price probability ranking, namely that after the third period price

quality deteriorates and remains poor until the end of the experiment.

3.2.2 Market Concentration

Here we study how price quality as measured by the ranking of state price probabil-

ities and the Sharpe ratio differences depends on the concentration of funds in the

hands of few managers. The deterioration of prices starts after period III, when the

realization of the state variable happens to be X (see Table 6 for the period state

realizations) and thus the aggregate wealth in the economy is at its lowest. As a

result, with the exception of a few funds, the performance of the funds was poor.

Those few “fortunate” funds attracted large portions of the investors’ inflow in the

following period. Thus, our conjecture is that price quality is inversely related to the

market concentration.

We use two measures of market concentration. The first is the Gini index of

the market according to expected dividends of the initial endowments of managers.8

For the second measure we rank the managers by the expected dividends of their

initial portfolios. Our market concentration measure is then equal to the fraction

of the aggregate expected dividend held by the largest manager (according to the

above ranking). Table 10 displays the values of the two measures for each of the six

periods. The correlation between the two measures is 0.77.

Concentration and trading volume. Market concentration correlates posi-

tively with the total trading volume in each period (see Figure 6). When the Gini

Index is used, the correlation is equal to 0.7, while it is 0.58 when the market share

of the largest manager is used as a proxy for market concentration. In addition, in

every period there is a positive correlation between market share of a manager and

the number of transactions by this manager. Additional analysis of the data (not

included here) indicates that large managers spread their trades across the period,

i.e., they do not tend to cluster their trading in the beginning or the end of the

trading periods.

8The Gini coefficient is based on the Lorenz curve and is defined as the ratio of the area that
lies between the line of equality and the Lorenz curve over the total area under the line of equality.
The Gini coefficient can range from 0 to 1 with low values indicating a more equal distribution (0
being the complete equality) and high values indicating more unequal distribution (1 being the case
that all wealth is in the hands of a single individual).
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Concentration and mean-variance efficiency. The correlation between the

Gini index and the absolute value of the Sharpe-ratio difference of the market portfo-

lio (computed each period using the average price over the last 5 minutes of trading),

while positive (0.2996), is not significant (p-value 0.5641). In comparison, the corre-

lation between the market concentration measured by the size of the largest manager

is both positive (0.8194) and significant (p-value 0.0460). Thus, the larger the largest

manager (according to the expected dividend of her initial portfolio) the worse the

performance of the market as measured by the Sharpe ratio difference. This result

indicates that what appears to be important in determining price quality in the mar-

ketplace is the size of the largest manager and not simply the fact that the market

is polarized between large and small funds.

Since large funds appear endogenously in our experiment (in periods IV and V the

largest manager has a market share of 20%), it is important to consider our results

in view of the literature on imperfect competition in asset markets. This literature

obtains that large traders will affect prices with respect to perfect competition in a

profitable way if there is no retrading (Lindenberg [1979]) or if there are significant

information asymmetries between large and small traders (e.g., Vayanos [1999], Kyle

[1985], and Grinblatt and Ross [1985]; see Pritsker [2002] for a survey of the relevant

literature). Our setup falls in neither of those categories, which leads us to conjecture

that the large effect of market concentration on asset prices is due to managers’

incentives given investor behavior. We turn to these incentives in the following

subsection.

Without an appropriate analysis of investor behavior we are tempted to conclude

that large managers in our experiment are far from rational, as implied by their

final asset holdings. Figure 7 displays the relation between the funds’ sizes and

their final portfolio’s Sharpe ratios. The cross-sectional correlations between the

Sharpe ratio of a fund and its current period size are 0.2, -0.37, -0.6, 0.05, -0.09,

-0.13 for the six periods of the experiment respectively. The correlations retain their

signs and magnitudes after removing the biggest and the smallest 3 funds from the

computations.

3.2.3 Investor Behavior

In this section we ask what determines the flows into a fund. The answer to this ques-

tion will illuminate possible reasons for the findings in the previous subsection. For

example, if investors do not reward managers with high Sharpe ratios by allocating
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more funds to them then managers will rationally respond to investors’ demands and

choose portfolios that would ensure higher fund flows in subsequent periods. Figure

8 shows the Sharpe ratio difference for each of the managers for all sessions (where

the market Sharpe ratio is computed based on the average prices in the last five

minutes of trading in each period). As evident from the figure and also confirmed by

additional analysis, some managers consistently outperformed the market portfolio in

that their final holdings had a smaller Sharpe ratio difference than the market port-

folio. However, the analysis reveals that the performance of the funds according the

their Sharpe ratio does not correlate positively with subsequent flows to the funds.

Thus, the funds that grow are not the ones that provide high Sharpe ratios for their

final portfolios.9 In particular, the Market Share of a manager in period t, MSt,

is positively correlated with the standard deviation of the returns on the manager’s

final portfolio in period t − 1. The correlation coefficient is 0.207 (p-value 0.006).

On the other hand, the correlation between MS and past-period expected return is

−0.058 (p-value 0.461). Univariate regressions of MS on each one of these variables

(in all of our regressions we adjust the standard errors for clustering by managers)

deliver analogous results. That is, there is a negative but not significant coefficient

for expected returns and a positive and significant coefficient for variance. When

both expected return and standard deviation of last period’s portfolio return are

included as explanatory variables for the next period’s Market Share, the resulting

coefficients are -6.098 (p-value 0.009) and 4.421 (p-value < 0.001) correspondingly.

This is a clear indication that investors (whether knowingly or not – see footnote 9)

were effectively not providing managers with incentives for mean-variance optimiza-

tion.

In what follows we analyze the relation between fund flows and each of the four

indicators of performance provided to the investors at the end of each period. As

9We did not give manager Sharpe ratios as part of the information disclosed to investors. In-
vestors had information about the realized state, x, the sum of prices, pA + pB , and the ratio
wj

ADA(x)+(1−wj
A)DB(x)

wj
ApA+(1−wj

A)pB
for j = 1, . . . , 32, where wj

A =
m̃j

A

m̃j
A+m̃j

B

is the fraction of the risky position

held in units of asset A. Knowledge of the trading price of one of the risky assets would have sufficed
to exactly compute the expectation and variance of managers’ returns. In the absence of precise
price information, but with the knowledge of pA + pB , investors could conjecture a price ratio in
the vicinity of pA

pB
= D̄A

D̄B
, which would have led to a very good approximation of the true mean and

variance of returns of managers’ portfolios and, hence, of their Sharpe ratios. Specifically, in our
experiment, D̄A

D̄B
= 0.77, while the values of pA

pB
for average prices over the last 5 minutes of trade

in the experimental periods were, respectively, 0.76, 0.58, 0.72, 0.74, 0.74, and 0.76. Thus, as long
as investors conjectured “reasonable” prices, they could deduce the means, variances and Sharpe
ratios of managers’ returns on their portfolios.

19



described in Section 2.3 indicators reported to investors were Return (denoted R in

the regression reports), Market Share (MS), Risky Share (Ri), and Residual payoff

after manager fee (Re). We also construct a variable called Excess Return (ER) that

is equal to R−RDow−Tech.

In order to study determinants of investor allocations in any period, we use

lagged values of all indicators denoted LR (with LRt = Rt−1), LMS, LRi, and LRe

correspondingly. We also use the lagged ER variable, denoted LER. In addition,

we create variables summarizing the information given in several past periods. The

growing average of lagged returns (GALR) is the average lagged return of all periods

including the current one (equal to the average return of all past periods). For

example, GALRIII (i.e. the value of GALR in period III) will be the average of

the return in periods I and II. A similar average is constructed for the risky share,

GARLi, as well as for the excess return, GALER. In order to differentiate how

much weight investors put on last period’s indicator vs. the average of this indicator

up to the last period, we use lagged value of the growing average variables.

Correlations between all of the above mentioned variables are presented in Table

11. Of particular interest is the strong correlation between the lagged Residual

variable and the current Market Share. The Residual variable captures both the

past return and the size of the manager. Consequently, as the table indicates, there

is also strong correlation between the Market Share of the managers and their

past period return (LR), their cumulative return (GALR), and their last period

size (LMS). The relatively lower magnitude of the correlation between last period’s

return and Market Share suggest that there is some “stickiness” of fund flows to

managers, i.e., even if a manager underperforms in a given period, she is not penalized

by investors if her overall performance (as measured by realized returns) has been

good. The conclusions from the simple correlations observation are confirmed in a

multivariate analysis setup as described below.

The results of several regression specifications with MS as the dependent variable

are presented in Table 12. From the univariate regressions, the specification with the

highest R-squared is when LRe is used as an independent variable. Other variables

with high explanatory power are GALER, the growing average of the lagged excess

returns and LMS, the lagged market share. On the other end, both LRi or GALRi

have insignificant explanatory power as demonstrated by the univariate regression

results.

In confirmation of the “stickiness” observation, the coefficient on LMS remains
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significant even when combined with other variables (with the exception of the re-

gressions that includes LMS and LRe only but this is an obvious result given that

those two variables are interdependent).

From the various multivariate regressions included in Table 12, the specification

with the highest R-squared is the one including LRe and GALER. To further de-

compose the dependence of current period’s fund inflows dependance on past returns,

Table 13 presents results of regression specification where lagged values of the grow-

ing average variables are included. For example, when both LER and LGALER are

included, both slope coefficients are significant, indicating that investor value past

performance beyond that of the last period. The significance of LGALER dimin-

ishes though if LRe is included, once again indicating that LRe already captures the

return information from past periods.

In summary, we find that investors flow their funds to managers with past high

realized returns and past risky portfolio choices, and that they do not penalize funds

for recent bad performance as long as the funds’ overall performance as measured

by their average return is good.10 Those are surprising results. In our experiments

the investors have to make allocations each period, i.e., sticking to a fund is not

the “default” option as is in the real world. Still, investors act asymmetrically when

rewarding and when penalizing funds with cash inflows and outflows correspondingly.

3.3 Experimental Asset Pricing without Delegation

The indicators we presented in section 3.2.1 have been used in numerous experimental

studies (see Asparouhova et al. [2003], Bossaerts and Plott [2004], Bossaerts et al.

[2007], Bossaerts, Ghirardato, Guarnaschelli, and Zame [2008a], Asparouhova and

Bossaerts [2009], and Bossaerts et al. [2008b]) to assess the validity of the basic

predictions of the standard asset pricing model. The aforementioned experiments

implement designs with complete three- or four-asset markets where a large number

(20+) of investors trade for their own benefit during periods of time (usually 6

to 10 such periods) with unchanged market fundamentals in each period (i.e., the

market portfolio, the asset payoff distribution, the individual endowments, and the

number of participants are identical in each period). A comprehensive review of the

10Our investor-subjects’ reaction to past returns is in line with empirical evidence (see, e.g.,
Chevalier and Ellison [1997] and Sirri and Tufano [1998], and see Stracca [2005] for a comprehensive
survey of empirical findings). It is well documented that investors react positively to past above-
market returns while they have sticky reactions to below-market returns. The experimental setting
allows us to also measure fund riskiness and thus directly assess investors’ reaction to this variable.
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experimental results is provided in Bossaerts [2009].

The general findings are that correct state-price ranking and near-complete mean-

variance efficiency are almost always achieved, especially in the later periods of an

experiment. That is, pricing is not only consistent with the presence of risk aversion

(as expressed in the ranking of state price probabilities), but also with mean-variance

preferences. The modal investor holds the market portfolio, thus justifying the mean-

variance efficiency of prices (see Bossaerts et al. [2007]). However, individual investors

typically do not hold the market portfolio.11 Figures 9 and 10 give graphical support

to the mentioned findings about asset prices.

The findings are robust to different dividend structures and market portfolios. In

experiments with three states of the world, market portfolios range from ones with lit-

tle aggregate uncertainty (with the ratio of wealth between the richest and the poorest

state being 1.5 in Bossaerts and Plott [2004]) to a large aggregate uncertainty (where

the aggregate wealth in the richest state is 43 times the wealth in the poorest state,

see Bossaerts, Ghirardato, Guarnaschelli, and Zame [2008a]). The dividend structure

of assets ranges from canonical Arrow-Debreu assets, to positively-correlated risky

assets, and includes setups where all risky assets have the same expected dividend

(see Bossaerts, Ghirardato, Guarnaschelli, and Zame [2008a]).

Thus, it is apparent that our experimental findings depart from the established

results in the experimental asset pricing literature. The single design difference

between the experiment in the paper and those previously studied is the presence

of delegation. Ours is not the first experiment to display asset pricing anomalies.

In Bossaerts et al. [2008a], in sessions with ambiguous assets state price probability

violate the predictions of the Arrow-Debreu model as well. What the authors find

in this case is that the “mispricing” is due to ambiguity aversion and that instead of

holding the market portfolio, the modal investor holds an ambiguity-neutral portfolio.

We replicate the individual holdings analysis of Bossaerts et al. [2008a]. In our case,

however, the modal subject does hold the market portfolio. Thus, it is not the

overall distribution of portfolio choices that drives the mispricing in our experiment.

Instead, the mispricing appears to be driven by the endogenous incentive mechanism

that delegation imposes on managers and the ensuing growth of some funds to a

point when they can (adversely) affect asset prices.

11For a comprehensive survey of recent experiments on asset pricing see Bossaerts [2009].
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4 Conclusions

This paper reports the results of a large scale experiment designed to study the

impact of delegation on equilibrium asset prices in competitive financial markets.

The experiment (6 periods of the main session and 1 end session) is conducted over

10 weeks with a large group of subjects serving as managers of funds and another

large group of subjects serving as investors who can only invest via delegating. In

early rounds, all funds receive approximately equal fund flows despite rather erratic

holdings at the end of trading, and CAPM pricing obtains. In round III, however,

the realized (stochastic) aggregate wealth of the economy was low and as a result

all but a handful of funds delivered poor performance. In subsequent rounds, the

successful funds received increasingly large allocations of assets and cash. We find

that there was a correlation of 0.66 between a manager’s funds distributed back to

investors in the previous period and the flow to that investor in the next period.

Managers with large fund flows were more likely to have large fund flows in the

next period as well, a finding that does not disappear when taking account of past

returns. Thus, there seems to be “stickiness” in fund flows. Moreover, investors do

not appear to use mean-variance as a criterion in choosing the fund managers. We

find that next period fund flows depend positively on last period portfolio variance.

The size of the largest manager turns out to be significantly positively correlated with

the mispricing in the market. When the largest manager held a significant share of

the market portfolio (20%), CAPM pricing no longer obtained. In fact, the equity

premium became negative. Our results indicate that it is the size of the largest fund

more than the segmentation of the markets into large and small funds that matters

for explaining the mispricing that occurred in our markets. Most importantly, our

results indicate that delegation cannot be ignored when analyzing market equilibrium

and asset pricing. This has significant implications for future research.
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Tables and Figures

Table 1: Weekly Calendar

Wed Fri Sat Mon Tue
Investors
and man-
agers
informed
of payoffs

Performance
indices
published
on website

Sign-up
announce-
ment for
investors

Performance
indices
published
in Tech

18.00 Close
investor
allocation
stage

Restricted
sign up for
managers

Investors
receive
access to
allocation
software

22.00
Opening
trading
round

Managers
see alloca-
tions
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Table 2: State-dependent asset dividends in US Cents.

State
X Y Z

Asset A 5 80 0
Asset B 0 30 80
Bond 100 100 100
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Table 3: Number of participants by type and the corresponding per capita market
portfolio composition for each period. The market composition is presented as the
average number of units of asset A, asset B and cash per investor.

Participants Market Portfolio Composition
Per Capita

Period Type A Type B A B Cash
I 30 34 46.9 37.2 $7.59
II 28 38 42.4 40.3 $7.73
III 37 34 52.1 33.5 $7.44
IV 37 35 51.4 34 $7.46
V 34 33 50.7 34.5 $7.48
VI 35 35 50 35 $7.50
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Table 4: Market portfolio. The top table gives number of units of each asset that
were available in each period. The bottom table gives state-dependent aggregate
endowments (in US dollars) in each period.

Asset / Period I II III IV V VI
Asset A 3000 2800 3700 3700 3400 3500
Asset B 2380 2660 2380 2450 2310 2450

State / Period I II III IV V VI
State X 150 140 185 185 170 175
State Y 3114 3038 3674 3695 3413 3535
State Z 1904 2128 1904 1960 1848 1960
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Table 5: Trading volume and asset turnover by period.

Trading Volumea

Asset / Period I II III IV V VI
Asset A 1114 1484 1652 1739 1648 1988
Asset B 942 928 1257 1383 1601 1919
Bond 212 135 217 279 349 446

Asset Turnoverb

Asset / Period I II III IV V VI
Asset A 0.37 0.53 0.45 0.47 0.48 0.57
Asset B 0.40 0.35 0.53 0.56 0.69 0.78

aTrading volume is the number of units of each asset that traded during a period.
bAsset turnover is calculated by dividing the trading volume of each asset over a period by the

total number of units of this asset outstanding (as presented in Table 4).

32



Table 6: Return (in %) for every manager and every period of the main experimental
session. The number reported in the table is 100 × rj, where rj is as defined in
equation (2.4).

Experimental Period (State Realization)
I (Z) II (Y) III (X) IV (Y) V (Y) VI (X)

Dow-Tech 20.54 82.99 -77.86 56.99 57.00 -79.70
Mutual Fund:
Albite -44.18 396.59 -82.53 124.55 66.00 -190.00
Alexandrite 119.13 113.11 8.04 95.97 -22.00 95.00
Allanite 10.47 49.25 -44.77 183.56 105.00 -5.00
Alunite 38.82 151.01 -92.82 37.93 134.00 -107.00
Amazonite 65.85 90.56 -65.71 140.10 139.00 -125.00
Amblygonite -134.56 128.56 -151.04 169.80 156.00 -93.00
Amosite 0.72 190.00 -75.85 46.72 8.00 -149.00
Andalusite -21.88 78.60 -139.44 133.15 50.00 -527.00
Anthophyllite 33.23 79.59 -119.18 45.22 -22.00 -145.00
Atacamite 33.52 99.66 -73.12 11.05 72.00 -96.00
Barite 13.60 42.12 -68.75 -5.77 28.00 -97.00
Bassanite 43.71 103.08 -84.90 180.47 69.00 -119.00
Beidelite 17.53 125.26 -88.90 57.75 9.00 54.00
Bementite -1.39 256.98 -83.28 65.47 177.00 -13.00
Bentonite -2.15 160.26 -79.58 34.24 62.00 -109.00
Bertrandite 115.89 -4.83 -79.86 193.54 145.00 93.00
Biotite 10.24 99.33 -65.89 64.34 59.00 -74.00
Birnessite 28.48 -8.78 -68.71 -101.90 -46.00 56.00
Bloedite -98.78 220.04 -56.92 -50.20 -99.00 -58.00
Boracite 22.92 134.16 -32.08 65.30 66.00 -120.00
Calcite 26.90 143.55 -36.50 -7.17 -17.00 -52.00
Carnallite -100.51 255.01 -100.67 206.02 206.00 -127.00
Celestite 13.00 38.49 -68.88 58.69 -12.00 3.00
Chalcopyrite 15.59 123.11 -121.49 -3.00 103.00 -60.00
Chlorite 5.94 100.74 -90.37 103.16 71.00 -125.00
Colemanite -1.19 194.06 42.61 -28.34 52.00 -68.00
Cornadite 23.03 197.94 -69.36 157.00 149.00 -131.00
Cristobalite 33.17 124.76 -74.29 -80.28 2.00 -131.00
Cryolite 67.25 51.22 -100.37 -22.45 37.00 -121.00
Dolomite -15.93 2.40 -100.54 69.67 -65.00 -74.00
Dumortierite 161.05 98.53 -68.26 49.24 48.00 -90.00
Dunite -39.27 70.75 -54.42 57.26 -3.00 76.00
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Table 7: Market Share (in %) indicator for every manager in every period. The
number reported in the table is 100× vj, where vj is as defined in equation (2.5).

Experimental Period
I II III IV V VI

Mutual Fund:
Albite 2.02 0.34 8.14 4.28 2.42 2.53
Alexandrite 2.38 11.61 10.36 19.95 20.34 8.67
Allanite 2.42 1.96 1.16 2.03 2.91 2.74
Alunite 2.34 2.27 5.69 1.88 1.78 2.21
Amazonite 4.62 6.68 6.19 3.71 5.65 6.80
Amblygonite 5.31 4.38 2.58 6.60 5.48 11.69
Amosite 2.33 0.98 3.89 1.81 0.77 1.29
Andalusite 3.36 0.84 1.22 1.08 2.27 0.85
Anthophyllite 2.78 1.70 0.89 2.03 0.86 0.63
Atacamite 3.38 4.39 2.72 1.25 1.74 0.74
Barite 2.93 2.19 1.12 0.46 0.84 0.57
Bassanite 2.84 3.18 2.11 1.09 5.66 2.68
Beidellite 3.17 1.83 2.06 1.37 0.89 0.74
Bementite 2.96 0.64 4.66 3.20 2.23 5.27
Bentonite 2.31 0.69 1.62 1.12 0.78 0.76
Bertrandite 2.01 10.57 2.98 0.90 4.54 6.27
Biotite 2.48 1.09 1.56 1.19 1.36 1.07
Birnessite 2.47 7.71 0.99 1.04 0.58 0.51
Bloedite 3.44 0.28 3.72 1.86 0.79 0.46
Boracite 3.06 1.44 1.67 3.30 3.77 2.44
Calcite 3.35 1.80 2.90 3.80 1.41 0.71
Carnallite 3.29 0.62 3.90 2.32 6.53 10.80
Celestite 2.78 1.82 1.64 1.23 0.89 0.50
Chalcopyrite 4.41 1.58 1.54 2.94 0.49 2.65
Chlorite 4.42 2.21 2.96 2.67 2.09 1.33
Colemanite 3.52 0.97 2.99 15.66 4.82 6.26
Cornadite 2.74 3.62 6.65 4.42 9.08 13.42
Cristobalite 3.12 1.87 3.07 1.55 2.22 0.69
Cryolite 3.42 6.15 2.82 0.91 1.13 0.70
Dolomite 4.02 12.36 2.28 1.20 1.97 1.18
Dumortierite 2.84 1.53 1.52 1.82 0.91 1.07
Dunite 3.48 0.70 2.38 1.34 2.80 1.77
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Table 8: Residual (in US Dollars) for manager in every experimental period. The
number reported in the table is max(Πj − Payj, 0), as defined in equation (2.6).

Experimental Period
I II III IV V VI

Albite 7.41 27.75 0.00 198.71 71.12 0.00
Alexandrite 95.01 398.53 145.59 787.06 177.48 319.36
Allanite 37.85 42.66 2.83 124.41 110.61 35.66
Alunite 51.37 92.75 0.00 46.76 78.94 0.00
Amazonite 131.63 197.72 0.00 187.20 258.46 0.00
Amblygonite 0.00 178.10 0.00 386.10 276.77 0.00
Amosite 31.70 45.57 0.00 49.10 11.98 0.00
Andalusite 28.41 23.16 0.00 52.91 57.78 0.00
Anthophyllite 58.54 44.82 0.00 54.55 7.64 0.00
Atacamite 71.76 142.55 0.00 22.37 52.83 0.00
Barite 48.50 45.34 0.00 6.37 16.88 0.00
Bassanite 66.23 100.13 0.00 65.96 169.05 0.00
Beidellite 53.88 65.45 0.00 40.82 14.38 20.00
Bementite 38.20 36.56 0.00 102.01 122.24 58.24
Bentonite 29.67 27.67 0.00 27.04 22.03 0.00
Bertrandite 77.38 109.82 0.00 57.66 215.50 227.22
Biotite 38.99 33.03 0.00 37.33 37.52 0.00
Birnessite 47.79 73.34 0.00 0.00 1.84 13.95
Bloedite 0.00 15.66 0.00 4.84 -7.15 0.17
Boracite 55.80 51.65 8.82 104.29 109.79 0.00
Calcite 65.03 67.26 12.62 51.06 14.14 1.27
Carnallite 0.00 38.52 0.00 155.34 403.01 0.00
Celestite 45.34 35.75 0.00 37.25 9.66 7.37
Chalcopyrite 76.05 54.24 0.00 42.34 18.37 0.00
Chlorite 64.75 67.77 0.00 109.17 63.70 0.00
Colemanite 46.27 49.33 66.15 126.92 125.06 0.00
Cornadite 51.21 172.12 0.00 241.04 435.21 0.00
Cristobalite 66.14 67.02 0.00 0.00 31.73 0.00
Cryolite 98.90 134.87 0.00 8.88 25.18 0.00
Dolomite 139.73 134.47 0.00 39.79 -2.42 0.00
Dumortierite 39.79 46.54 0.00 50.08 22.95 0.00
Dunite 16.50 15.99 1.12 39.85 37.17 57.17
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Table 9: Risky Share (in %) for every manager in every experimental period. The
number reported in the table is 100× νj, where νj is as defined in equation (2.7).

Experimental Period
I II III IV V VI

Dow-Tech 86.61 84.75 85.24 86.92 86.92 86.6
Albite 78.88 242.13 93.6 47.98 113.42 197.28
Alexandrite 100.49 100 -10.92 109.86 82.65 -117.53
Allanite 110.26 74.32 57.29 99.36 26.77 -7.2
Alunite 99.75 100 100.76 99.98 99.33 119.57
Amazonite 101.77 96.11 72.49 114.23 76.35 121.52
Amblygonite 99.77 99.99 172.01 89.47 82.67 102.85
Amosite 65.11 112.09 86.3 90.28 113.63 145.98
Andalusite 78.9 120.55 150.07 104.64 120.57 475.63
Anthophyllite 101.64 99.97 127.92 101.73 104.15 159.8
Atacamite 75.97 106.65 80.78 8.47 60.86 101.55
Barite 76.8 62.05 85.09 29.38 39.22 92.17
Bassanite 92.39 99.84 99.75 99.93 96.06 121.64
Beidellite 99.87 111.98 99.68 55.49 11.08 -63.61
Bementite 77.55 106.61 92.29 11.92 54.4 12.15
Bentonite 83 98.58 90.21 77.15 90.66 119.3
Bertrandite 99.84 69.59 98.77 115.29 70.92 -152.87
Biotite 77.81 75.01 77.77 99.6 93.41 79.08
Birnessite 13.33 11.6 75.28 -4.27 7.45 -91.59
Bloedite 57.99 88.08 65.02 -73.78 -174.07 67.24
Boracite 99.62 99.41 34.69 89.15 66.86 128.35
Calcite 70.9 61.12 40.1 4.79 -42.74 30.56
Carnallite 117.61 122.34 123.86 119.12 119.08 155.1
Celestite 45.65 22.71 75.19 98.78 56.31 -18.67
Chalcopyrite 80.66 99.04 135.73 -23.95 -0.49 75.45
Chlorite 37.15 99.55 99.56 90.74 96.46 120.65
Colemanite 0 101.46 -39.2 99.4 77.81 97.51
Cornadite 108.77 120.29 74.92 71.86 114.19 145.84
Cristobalite 87.53 82.17 81.65 30.96 83.43 132.77
Cryolite 99.97 63.35 109.82 101.35 99.74 122.84
Dolomite 71.69 31.31 109.33 -17.45 35.92 78.45
Dumortierite 76.44 96.19 74.98 61.67 93.61 95.43
Dunite 20.89 65.04 58.14 99.38 -2.33 -110.85
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Table 10: Gini index given by the market share of each manager. The market share
of a manager is the fraction of the market portfolio (value computed with mean
dividends) given by her initial allocation.

Concentration indicator
Session Gini index Market share of

largest manager

061017 0.1334 0.0524
061024 0.5039 0.1236
061030 0.3434 0.1032
061107 0.4905 0.1995
061114 0.4978 0.2034
061121 0.5491 0.1342
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Table 11: Correlations

MSa LMSb LRc LRed LRie GALRf GALRi LERg GALER

MS 1 0.5407 0.3648 0.691 0.1065 0.5241 0.1452 0.4313 0.5517
LMS 1 -0.0511 0.652 0.0232 0.2043 0.0079 -0.0604 0.2151
LR 1 0.4629 0.2592 0.7167 0.2747 0.9734 0.6576
LRe 1 0.1303 0.431 0.1711 0.4441 0.4217
LRi 1 0.2361 0.7838 0.3273 0.2369
GALR 1 0.3076 0.7601 0.9901
GALRi 1 0.3392 0.3208
LER 1 0.7236
GALER 1

aMS is value of the performance indicator Market Share.
bLMS is lagged Market Share.
cLR is lagged Return.
dLRe is lagged Residual (Re).
eLRi is lagged Risky Share (Ri).
fGA stands for growing average, meaning that in every period one more observation is added to

the computed average.
gLER is lagged ExcessReturn (ER) over the return of the Dow Tech.
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Table 12: Regressions of Market Share, periods 2 and on. Numbers in parentheses
are t statistics.

Intercept LMSa LRb LRec LRid GALRe GALRi LERf GALER R2

0.012 0.607 0.292
(3.517) (4.875)
0.027 0.013 0.133

(6.681) (6.652)
0.015 0.00024 0.477

(6.927) (13.48)
0.025 0.008 0.011

(3.536) (1.32)
0.017 0.043 0.275

(3.579) (3.439)
0.016 0.018 0.021

(1.521) (1.562)
0.027 0.019 0.186

(6.969) (6.922)
0.021 0.047 0.304

(4.789) (3.336)
0.007 0.63 0.014 0.447

(2.158) (5.925) (7.119)
0.012 0.176 0.00021 0.492
(5.14) (1.61) (7.654)
0.004 0.508 0.035 0.471

(0.958) (4.359) (4.131)
0.007 0.639 0.02 0.508

(2.326) (6.335) (7.061)
0.007 0.497 0.039 0.491

(2.042) (4.287) (3.881)
0.026 0.013 0.001 0.133

(3.781) (5.831) (0.158)
0.015 0.00022 0.007 0.497

(7.452) (9.062) (2.62)
0.012 0.00019 0.027 0.560
(4.86) (13.969) (3.001)

aLMS is lagged Market Share.
bLR is lagged Return.
cLRe is lagged Residual (Re).
dLRi is lagged Risky Share (Ri).
eGA stands for growing average, meaning that in every period one more observation is added to

the computed average.
fLER is lagged ExcessReturn (ER) over the return of the Dow Tech.

39



Table 13: Regressions of Market Share, periods 3 and on. Numbers in parentheses
are t statistics.

Intercept LMSa LRb LRec LRid LGALRe GALRi LERf LGALER R2

0.011 0.018 0.039 0.319
(1.98) (5.603) (2.51)

0.003 0.534 0.015 0.015 0.515
(0.974) (3.968) (6.114) (1.655)

0.008 0.006 0.0002 0.02 0.577
(3.203) (2.268) (9.293) (2.806)

0.018 0.019 0.034 0.312
(4.454) (7.255) (2.035)

0.008 0.006 0.0002 0.02 0.577
(3.203) (2.268) (9.293) (2.806)

0.012 0.00019 0.007 0.014 0.562
(6.059) (9.005) (2.712) (1.846)

0.001 0.186 0.00019 0.004 0.555
(2.741) (1.445) (7.853) (0.51)

aLMS is lagged Market Share.
bLR is lagged Return.
cLRe is lagged Residual (Re).
dLRi is lagged Risky Share (Ri).
eGA stands or Growing Average, meaning that in every period one more observation is added

to the computed average. LGA stands for Lagged Growing Average.
fLER is lagged ExcessReturn (ER) over the return of the Dow Tech.
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Figure 1: jMarkets Trading Screen
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Figure 2: The time series of transaction prices.
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Figure 3: The time series of state-price probabilities.
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Figure 4: State-price probabilities computed for the average price over the last 5
minutes of trade. All periods.
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Figure 5: Difference between the Sharpe ratio of the market portfolio and the optimal
Sharpe ratio (at current prices) for all trading prices for each period.
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Figure 6: Total trading volume in all assets plotted as a function of market concentra-
tion. The blue markers denote market concentration measured as the market share
of the largest manager. The black markers denote market concentration measured
as the Gini index of manager’s initial allocations.
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Figure 7: Scatter Plot of The Expected Mean-Standard Deviation Ratio of Final
Portfolio as a Function of the Fund’s Size.

0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fraction of Total Weath

M
ea

n−
S

ta
nd

ar
d 

D
ev

ia
tio

n 
R

at
io

 o
f F

in
al

 P
or

tfo
lio

061017

0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fraction of Total Weath

M
ea

n−
S

ta
nd

ar
d 

D
ev

ia
tio

n 
R

at
io

 o
f F

in
al

 P
or

tfo
lio

061024

0 0.05 0.1 0.15 0.2 0.25
−2

−1.5

−1

−0.5

0

0.5

Fraction of Total Weath

M
ea

n−
S

ta
nd

ar
d 

D
ev

ia
tio

n 
R

at
io

 o
f F

in
al

 P
or

tfo
lio

061030

0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fraction of Total Weath

M
ea

n−
S

ta
nd

ar
d 

D
ev

ia
tio

n 
R

at
io

 o
f F

in
al

 P
or

tfo
lio

061107

0 0.05 0.1 0.15 0.2 0.25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fraction of Total Weath

M
ea

n−
S

ta
nd

ar
d 

D
ev

ia
tio

n 
R

at
io

 o
f F

in
al

 P
or

tfo
lio

061114

0 0.05 0.1 0.15 0.2 0.25
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Fraction of Total Weath

M
ea

n−
S

ta
nd

ar
d 

D
ev

ia
tio

n 
R

at
io

 o
f F

in
al

 P
or

tfo
lio

061121

47



Figure 8: Sharpe ratios for the managers in comparison to the optimal Sharpe ratio
(normalized to 0) and the market Sharpe ratio
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Figure 9: State-price probability ratios in time. From Bossaerts and Plott (2004)
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Figure 10: Sharpe ratio differences in time. From Bossaerts, Plott and Zame (2007)
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