
Noisy Prices and Inference Regarding Returns

ELENA ASPAROUHOVA, HENDRIK BESSEMBINDER,

and IVALINA KALCHEVA∗

ABSTRACT

Temporary deviations of trade prices from fundamental values impart bias to estimates

of mean returns to individual securities, to differences in mean returns across portfolios,

and to parameters estimated in return regressions. We consider a number of corrections,

and show them to be effective under reasonable assumptions. In an application to CRSP

monthly returns, the corrections indicate significant biases in uncorrected return premium

estimates associated with an array of firm characteristics. The bias can be large in

economic terms, e.g., equal to 50% or more of the corrected estimate for firm size and

share price.
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Some of the most frequently studied research questions in the field of Finance invoke

comparisons of mean rates of return across securities and portfolios. Such comparisons lie

at the heart of the vast empirical asset pricing literature, and are central to the estimation

of firms’ cost of capital. Beyond formal asset pricing tests, researchers have assessed

relations between mean returns and a diverse array of firm attributes, such as the quality

of corporate governance (Gompers, Ishii and Metrick (2003)), aggregate short selling and

institutional ownership (e.g. Asquith, Pathak, and Ritter (2005), media coverage (Fang

and Peress (2009)), success of customer firms (Cohen and Frazzini (2008)), and credit

ratings (Avramov, Chordia, Jostova, and Philipov (2007)), to name just a few. Studies

that compare returns on stocks of interest to those of designated “benchmark” securities,

as in Barber and Lyon (1997) and Lakonishok and Lee (2001), also measure mean returns.

However, it is broadly recognized that the price data used to compute security returns

contains noise attributable to market imperfections. Noise arises from microstructure

frictions such as bid-ask spreads, nonsynchronous trading, discrete price grids, and the

temporary price impacts of order imbalances. Noise can also arise due to changes in

investor sentiment or other behavioral factors, in combination with limits to arbitrage.

We use the term noise to mean any temporary deviation of price from underlying value.

We discuss the economics of noisy prices more fully in the subsequent section.

The effects of noisy prices on empirical estimates of return volatility have been studied

extensively in the “realized volatility” literature.1 In contrast, the effects on estimates

of mean returns and return premia have received less attention. The most prominent

exception is Blume and Stambaugh (1983), who showed that zero-mean noise in prices

leads to strictly positive bias in individual securities’ mean returns, with the magnitude

of the bias in each security’s mean return approximately equal to the variance of the noise

in the security’s prices. Blume and Stambaugh (1983) also showed that cross-sectional

mean returns to equal-weighted (EW ) portfolios are upward biased by the cross-sectional

average of the individual security biases. This implies that a comparison of mean returns
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across equal-weighted portfolios can be misleading. If portfolios are created by sorting

on a variable correlated with the variance of noise, then the upward bias will be greater

for the portfolio containing noisier securities, and the difference in mean returns across

portfolios is biased. Biases attributable to noisy prices also arise in regression analyses.

In particular, Asparouhova, Bessembinder and Kalcheva (2010) show that noisy prices

lead to biases in intercept and slope coefficients obtained in any ordinary least squares

(OLS) regression using rates of return as the dependent variable.

Many researchers who study security returns make no allowance for the potential

effects of noisy prices. For example, examining papers published in only two premier

outlets, The Journal of Finance and The Journal of Financial Economics, over a recent

five year (2005–2009) interval, we were able to identify twenty four papers that report

equal-weighted mean returns and compare them across portfolios.2 In addition, dozens,

if not hundreds, of published studies report results of OLS regressions using security or

portfolio returns as the dependent variable, including cross-sectional “Fama-MacBeth”

regressions and time-series “Factor-model” regressions. The implicit assumption in these

studies is that any effects of noise in prices are small enough to be safely ignored. In

part this may reflect a perception that noise-induced biases are likely to be important

only in daily (or higher frequency) returns, and not in the monthly returns that are most

frequently studied.

This paper assesses the effects of noisy prices on inferences regarding mean returns

to individual securities and portfolios, and regarding return premia associated with

stock characteristics. To illustrate the potential importance of the issue, we study

monthly Center for Research in Security Prices (CRSP) returns from 1966 to 2009, and

obtain uncorrected return premia estimates associated with a representative set of firm

characteristics, including trading volume, share price, illiquidity, market-to-book ratio,

and firm size. We then compare these estimates to those obtained after correcting for the

effects of noisy prices. We consider several possible corrections, including the buy-and-
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hold method implemented by Blume and Stambaugh (1983) and Conrad and Kaul (1993),

among others, and the gross-return-weighting method implemented in Asparouhova,

Bessembinder and Kalcheva (2010). We also assess the effects of value-weighting returns,

when weights are based on prior-month market values, and (since researchers often form

value-weighted portfolios on an annual basis) based on prior-December market values.

As discussed more fully in Section II, each of these corrections equates to computing

weighted average portfolio returns or estimating regression parameters by weighted

least squares. The methods are distinguished by the weighting variable used, and the

potential effectiveness of each method stems from the use of the lagged observed price

in constructing weights. For brevity, and as explained in more detail in Section II, we

refer to the buy-and-hold method implemented by Blume and Stambaugh (1983) as the

“initial-equal-weighted” (IEW ) method. We refer to the correction implemented by

Asparouhova, Bessembinder and Kalcheva (2010) as the “return-weighted” (RW ) method,

and to weighting by the prior-period market capitalization as the “value-weighted” (VW )

method. Finally, we refer to weighting by prior-December market value as the “annual-

value-weighted” (AVW ) method.

Blume and Stambaugh (1983) assume that the noise in security prices is independent

across periods, i.e., that the noise in the period t price is on average dissipated by period

t + 1. Asparouhova, Bessembinder and Kalcheva (2010) follow, and also assume that

the noise in prices is independent across securities in their consistency proof. Here we

assess, by theory and simulation, the effect of relaxing these assumptions. The results

show that the corrected estimates are not necessarily consistent when the noise in prices

is dependent across time or across securities. However, for any reasonable range of

parameters, corrected estimates are strictly less biased than uncorrected (equal-weighted

or OLS) estimates. That is, the effect of implementing the corrections considered is

always to reduce the bias attributable to noisy prices. Further, for moderate violations

of the independence assumption that are in line with the empirical estimates provided
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by Brennan and Wang (2010) and Hendershott, Li, Menkveld, and Seasholes (2011), the

remaining bias in the corrected estimates is minimal.

In terms of effectiveness in mitigating biases in portfolio mean return estimates, the

analysis provides little reason to prefer VW over RW , or vice versa. While each is effective

in mitigating bias, the former places greater weight on large firms while the latter places

essentially equal weight on each security in the sample. The final choice may therefore

depend on researchers’ preferences for weighting the information contained in the small

versus large firms in the sample. In contrast, the VW method strictly dominates the

AVW method in terms of mitigating the bias, which reflects that the AVW method

does not correct for bias in months other than the first month after portfolio formation.3

Further, for realistic parameters, theRW method contains less bias than the IEW method

when estimating mean portfolio returns. Applied to the estimation of slope coefficients

in regressions with returns as the dependent variable, we find for reasonable parameter

estimates that the VW , RW and the IEW methods are all effective in mitigating the

bias, and that the differences across corrected estimates are small.

Empirically, comparisons of uncorrected (EW or OLS) return premium estimates to

estimates corrected by any of the weighting methods indicate statistically significant bias

for all five firm characteristics considered, as well as for market Beta. However, the

magnitude of the estimated bias varies considerably across characteristics. The RW and

IEW estimates of the return premium associated with the book-to-market ratio differ

by less than 10% from the uncorrected estimates, indicating modest bias. In contrast,

the estimated biases in the return premia associated with firm size, share price, trading

activity, and illiquidity are more substantial, equating to over 50% of the corrected

estimates. While we focus here on return premia associated with five representative

firm characteristics, similar biases potentially affect any variable used to explain average

returns.

We delve further into the sources and economic interpretation of noise in prices in the
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next section. In Section II we assess the properties of the RW , IEW , and VW corrections,

by theory and simulations. The empirical methodology and explanatory variables used

are introduced in Section III. Empirical results are reported in Section IV, while Section

V concludes.

I. The Economics of Noisy Prices

Numerous researchers have noted that the prices at which security trades take place

can differ from underlying security values. We follow Blume and Stambaugh (1983)

in referring to the underlying security value as the “true” price, and for simplicity of

exposition we refer to the divergence of observed trade prices from true prices as “noise.”

True prices have also been referred to as implicit or efficient prices, or fundamental values.

The divergence of observed prices from true prices has also been referred to as mispricing,

particularly when considering situations where the divergence is potentially larger than

some traders’ costs of transacting. Regardless of whether one prefers the label noise or

mispricing, if observed trade prices differ from true prices, then rates of return computed

from observed prices differ from returns based on true prices. While some researchers

may indeed want to make inferences regarding the characteristics of observed returns, we

argue here that in many cases researchers will want to make inferences with regard to

true returns, and we evaluate the properties of alternate methods of doing so.

A. Sources of Noise in Prices

In the discussion that follows we highlight the distinguishing characteristic of noise in

transaction prices: noise is temporary, and is reversed over time. We interpret noise to

mean any temporary deviation of transaction prices from true prices.

Scholes and Williams (1977), Blume and Stambaugh (1983), and Ball and Chordia

(2001), among others, emphasize microstructure-based frictions such as bid-ask spreads,

non-synchronous trading, and a discrete price grid as sources of noise in observed
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prices. Other authors have focused on the potentially important role of large orders or

accumulated order imbalances. Grossman and Miller (1988) show that orders submitted

by those who demand liquidity lead to price changes that are subsequently reversed

on average, with the reversal compensating market makers for supplying immediate

execution. Admati and Pfleiderer (1991) extend the Grossman and Miller model to allow

outside speculators with fixed market participation costs to act as de facto market makers,

who enter the market in response to large price movements caused by order imbalances.

Bertsimas and Lo (1998) observe that short-term demand for even the most actively traded

securities is not perfectly elastic, and develop a model of optimal execution strategies for

large traders when their orders have both permanent and temporary effects on prices.

Hasbrouck (2007, chapter 15) extends the analysis to allow for slowly decaying temporary

price effects, where the transient price effects of order imbalances spill over into periods

subsequent to order execution.

The microstructure-based literature implies that prices will generally contain noise

even if all traders are fully rational. However, noise can also arise due to the presence of

irrational traders. Black (1986) notes that “noise traders” include those with immediate

liquidity needs, as well as traders who think they are informed, but are not. The vast

“behavioral finance” literature (see, for example, the Barberis and Thaler (2003) survey)

posits that some or all traders are not fully rational, e.g., because they do not update

beliefs correctly, resulting in market prices that deviate from fundamental values. Models

in which all traders exhibit behavioral biases or where barriers to arbitrage are sufficiently

large can imply that prices are permanently altered, as compared to those implied

by models of rational traders operating in frictionless markets. However, permanent

deviations of price from value are likely not detectable by econometricians, and in any

case impart no bias to either corrected or uncorrected return premium estimates, as shown

in Section II.4

The empirical evidence generally confirms that order imbalances can temporarily push
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price away from value. Chordia and Subrahmanyam (2004) study individual New York

Stock Exchange (NYSE) securities, and report that price changes are positively related to

contemporaneous order imbalances, but negatively related to order imbalances over the

four prior days. Andrade, Chang, and Seasholes (2008) study Taiwanese stocks, and also

find a negative relation between price changes and prior-day order imbalances. In a study

potentially important to researchers who focus on security prices measured at the monthly

interval, Hendershott, Li, Menkveld, and Seasholes (2011) estimate that a quarter of the

variance in monthly returns to NYSE stocks is due to transitory price changes that are

themselves partially explained by cumulative order imbalances and measures of market-

makers’ inventories. Jegadeesh (1990) and Lehmann (1990) each document significant

reversals of price changes for CRSP common stocks, the former at a one month horizon,

the latter at a weekly horizon, also consistent with the notion that transaction prices

contain significant noise.

Collectively, the literature implies that prices can differ from fundamentals values

because cumulative order imbalances move prices if short-run liquidity supply is not

perfectly elastic, and because not all traders are necessarily fully rational. If barriers are

not too large the resulting divergence of observed from true prices can create opportunities

for additional de facto liquidity providers to enter the market. The mechanism is well

described by Harris (2003, page 414), who observes that “Large orders and cumulative

order imbalances created by uninformed traders also cause prices to move from their

fundamental values. The price changes reverse when value traders or arbitrageurs

recognize that prices differ from fundamental values. Their trades then push prices back.”

With regard to the horizon over which noise is reversed, Harris (2003, page 414) notes

that “The price impacts of large orders and order imbalances generated by uninformed

traders may cause negative price change serial correlations measured over minutes, hours,

days, or even months.”

As noted, we interpret any temporary deviation of transaction prices from true prices
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as noise. However, not all temporary components in prices necessarily reflect noise.

Poterba and Summers (1988), among others, have observed that time variation in required

returns can induce a transitory component in prices. We assess in Internet Appendix

to this paper whether the properties of the proposed corrections for noise are adversely

affected by time variation in discount rates, and conclude that the effect on the corrections

is minuscule for any reasonable parameterization.

B. Noisy Prices and Inference Regarding Price Appreciation

Let the observed period t price for any given stock be P o
t = Pt(1+δt), where Pt denotes

the true price. Ignoring dividends for simplicity, the true and observed (gross) period t

returns are simply Rt = Pt/Pt−1 and Ro
t = P o

t /P
o
t−1, respectively. We follow Brennan

and Wang (2010) in relaxing the independence assumption to allow the noise component

of the prices, denoted δt, to follow an AR(1) process. In Appendix A we show that the

generalized version of the Blume and Stambaugh (1983) result regarding the expected

return to any given security is:

E(Ro
t )
∼= E(Rt)(1 + σ2(1− ρ)), (1)

where σ2 and ρ are the variance and first-order autocorrelation of δt respectively. The

mean observed return is larger than the mean true return as long as ρ < 1, i.e., if the

deviations of observed from true prices are indeed temporary. As in Blume and Stambaugh

(1983) the differential between the mean observed and true returns increases with σ2.

To illustrate the existence and the implications of noise-induced bias in mean observed

returns, consider the following simple example. There are two securities, each of which

has a constant true price equal to $10. However, transaction prices for each security are

affected by zero-mean noise. In particular, security 1 trades at a price of either $9.9 or

$10.1, with equal probabilities. Security 2 is subject to more noise, and trades at either
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$9.8 or $10.2, again with equal probabilities. The possible returns observed for security 1

are 2.02% (25% probability), -1.98% (25% probability) or zero (50% probability). For

security 2, the possible observed returns are 4.08% (25% probability), -3.92% (25%

probability) or zero (50% probability). In a large sample, the average return observed for

security 1 will be 0.01%, while that observed for security 2 will be 0.04%.5

Notice that in this example neither the true price nor the expected observed price drifts

upward over time. Nevertheless, positive mean returns are observed for both securities,

and the mean is larger for the security with more noisy prices. The outcome that the

average observed return overstates the rate of increase in prices is not specific to this

example. The intuition remains intact when the true price, Pt, follows a random process

(with or without drift) and for more complex noise distributions, as long as the noise is

zero-mean. Consider for simplicity the case where true returns do not depend on past

prices (as when true prices follow a martingale process), which implies that the expected

true gross return at time t is the ratio of expected prices at time t and time t− 1.6 Also,

given zero-mean noise, we have E(P o
t ) = E(Pt) for any t. In combination we can write:

E(P o
t )

E(P o
t−1)

=
E(Pt)

E(Pt−1)
= E(Rt) ≤ E(Ro

t ) = E

(
P o
t

P o
t−1

)
, (2)

where the inequality results from expression (1).

Expression (2) implies that the growth rate in expected prices (true or observed) is

strictly smaller than the expected observed return when prices contain noise.7 The fact

that the mean observed return overstates the rate at which prices trend upward over time

comprises a key reason that many researchers will want to adjust observed returns for the

effects of noisy prices. From expression (1), the divergence between the expected observed

return and the growth in expected prices increases with the variance of the noise.

Note also that the value of investor holdings (aggregated across all agents in the
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economy) in any given firm is simply the number of shares outstanding times the price per

share. The rate of growth in expected aggregate shareholder value is, for every firm, the

same as the rate of growth in the expected share price. The implication is that researchers

who are interested in studying the growth in expected shareholder value should focus on

the expected true return.

C. Mean Observed Returns and Active Trading

The preceding discussion highlights what mean observed returns do not measure: the

rate of growth in expected prices or aggregate shareholder wealth. We now turn to what

mean observed returns do measure: returns to a hypothetical active trading strategy

potentially used by a non-representative subset of investors.

Researchers who are interested in studying outcomes from active trading strategies will

indeed want to study observed prices and returns (while making appropriate allowances

for trading costs and other implementation issues). A focus on active trading can be

motivated by the fact that some investors can potentially improve their returns by trading

successfully on noise. As a case in point, Hsu (2006) shows that periodically rebalancing

a portfolio to maintain equal weights can increase average portfolio returns relative to

those earned on a value-weighted portfolio. His computations pertain in particular to an

investor who succeeds in selling at prices that have increased (relative to other securities

in the same portfolio), and vice versa, to reestablish equal weights. The strategy improves

returns if the price changes that precipitated the trades are reversed on average, i.e., if

prices contain noise. To the extent that the noise in prices reflects liquidity demand on the

part of impatient traders, the posited rebalancing strategy is one of liquidity provision,

and the improved returns can be interpreted as compensation for supplying liquidity.

However, if one investor sells (buys) at a price containing positive (negative) noise,

another necessarily takes the opposite side of the trade. Gains and losses from active

trading are zero-sum across all agents in the economy. The broader implication is
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that an equal-weighted cross-sectional mean of observed returns should be interpreted

as pertaining to a hypothetical subset of investors who successfully execute an active

rebalancing strategy. Similarly, the equal-weighted time-series mean observed return for

an individual stock should be interpreted as pertaining to the hypothetical subset of

investors who succeed in selling at prices that have increased and buying at prices that

have decreased, so as to maintain constant dollar investment over time. In either case

the experience of these hypothetical active investors does not reflect the experience of

shareholders in the aggregate.

While our discussion to this point has focused on mean returns, the issues carry over

to cross-sectional regressions with observed returns as dependent variable. Models such

as the CAPM or the APT predict equilibrium pricing relationships, and do not explicitly

allow for noise in prices. They therefore provide no explicit guidance as to whether

researchers should use cross-sectional regressions to estimate parameters of the true or

the observed return distribution.

We argue that the key cross-sectional implication of the CAPM and similar models is

that positions taken in high risk (appropriately measured) securities should be associated

with growth over time in the expected value of the position, relative to positions in low

risk securities. In terms of the simple two-asset example in the prior subpsection, suppose

that security 2 has more risk than security 1. Should the larger mean observed return for

security 2 then be viewed as supportive of a positive risk-return tradeoff? Or, should the

fact that expected prices for both securities are constant through time be interpreted to

indicate the absence of return premia? We believe the latter interpretation is appropriate.

We summarize this discussion as follows. Researchers who are interested in studying

growth in the aggregate value of all shareholdings in a given stock or group of stocks

should conduct statistical inference with respect to the properties of true returns. In

contrast, researchers who are interested in studying the potential profitability of specific

active trading strategies will want to study observed prices and returns, while allowing for
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implementation issues. Researchers who report the equal-weighted mean observed return

on individual stocks or portfolios, or coefficients estimated by OLS return regressions, are

implicitly studying returns (before implementation costs) to active strategies potentially

used by subsets of investors.

II. Return Estimators in the Presence of Noisy Prices

Researchers who wish to study the properties of true returns must still make their

inferences on the basis of the noisy return data that is observable. In this section we discuss

alternative methods of correcting cross-sectional parameter estimates for the effects of

noisy prices. We then assess the large sample properties of those estimators, by theory

and simulations.

A. The Weighted Estimators

We consider three main potential methods of correcting observed mean returns and

return regression slope coefficients for the effects of noisy prices. The common thread

across the three methods is that each involves weighting the observed time t return by a

variable proportional to the time t−1 observed price. The intuition for the effectiveness of

all three methods is conveyed by expression (13) in Blume and Stambaugh (1983), which

shows that the expectation of a weighted portfolio return depends on expected weights,

expected returns, and covariances between weights and returns. Expected observed

returns are upward biased, as noted. A necessary condition for a weighting method

to offset this bias is negative covariation between weights and observed returns. The use

of a weighting variable proportional to the time t− 1 observed price induces the requisite

negative covariation: if the t− 1 observed price contains positive noise then the weight is

increased and the time t return is decreased, on average, and vice versa.

Weighting methods (including equal weighting and other constant-weight methods)

that do not induce the requisite negative covariation will not eliminate the bias. In
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particular, mean returns to portfolios constructed on the basis of “fundamental” weighting

(e.g., based on cash flows, dividends, or earnings) are, like equal-weighted portfolios,

upward biased.

A.1. The Initial-Equal-Weighted Method

Blume and Stambaugh (1983) focus on cross-sectional mean portfolio returns, and

introduce the “buy-and-hold” portfolio as a correction for noisy prices. The essential

feature of a “buy-and-hold” portfolio is that the number of shares of each security is

held fixed for some period of time. However, portfolio weights (the proportion of total

investment in each security) depend both on share positions and prices. The weights in

a “buy-and-hold” portfolio will therefore change through time as relative prices change.

Conversely, to maintain constant portfolio weights requires changes in numbers of shares

held to offset changes in share prices, highlighting that equal-weighted portfolios as well

as other constant-weight portfolios imply active trading.

Blume and Stambaugh’s theoretical motivation considered price-weighted portfolios,

while their empirical analysis studied portfolios that are equal-weighted at the beginning of

each calendar year, with share positions held constant through the subsequent year, before

rebalancing to equal weights at year end. We refer to their empirical implementation as

the “initially-equal-weighted” method, or IEW . Conrad and Kaul (1993) rely on the

same method, but rebalance after three years.

The IEW method implies portfolio weights that evolve through time as a function

of observed returns. In particular, if equal-weighted portfolios are formed at time zero,

then the time t portfolio weighting variable for each stock n is wnt =
P 0
nt−1

P 0
n0

, which reflects

that securities with greater price appreciation subsequently receive greater weights in a

non-rebalanced portfolio. Note, though, that the IEW method assigns equal weights to

each security in the first period after the portfolio is formed (t = 1), implying the absence

of any correction for the effects of noise in the first period.
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A.2. The Return-Weighted Method

Asparouhova, Bessembinder and Kalcheva (2010) focus on cross-sectional return

regressions, and implement a correction that involves weighted least squares estimation,

with the prior-period gross return used as the weighting variable. Applied to estimating

portfolio returns, this correction simplifies to computing a weighted mean return, where

the weighting variable is the prior-period gross return.8 We will denote this method RW .

Unlike IEW , the RW method does not have a “buy-and-hold” interpretation. The

criterion that is assessed here is the ability of a method to provide consistent estimates

of parameters of the true return distribution. The RW method can (under assumptions

to be clarified) provide a consistent estimate of the mean true return on a single security,

or of the mean true return to a portfolio of securities. The mean true return to an equal-

weighted portfolio potentially differs (in particular if true returns are related to value) from

the mean true return to a value-weighted portfolio. A researcher may well be interested

in estimating the former, e.g., because value-weighted portfolios can be dominated by

a few large capitalization stocks. Further, when estimating cross-sectional parameters,

e.g., the return premium associated with beta or market capitalization, the information

contained in the returns of a small capitalization stock is potentially as informative as

that contained in the returns of a large capitalization stock, and the researcher may not

want to weigh it less. Though it does not have a “buy-and-hold” interpretation, the RW

method provides bias-corrected estimates of true mean returns and of true cross-sectional

pricing parameters.

The RW method relies on the weighting variable wnt = R0
nt−1. To assess the relation

between the RW method and the IEW method, consider a generalization where weighting

is based on the prior s-period gross return: wnt = R0
nt−1−s . . . R

0
nt−1 =

P 0
nt−1

P 0
nt−1−s

, which we

refer to RW (s). Note that RW (s) coincides with IEW when the relation between s and

t (the number of periods since IEW portfolio formation) is t − s = 1. Thus, the IEW
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method equates to RW (1) in t = 2, to RW (2) in t = 3, etc. In their empirical analysis

Blume and Stambaugh compute weighted returns up to time t = 12, when the portfolio

is once again rebalanced to equal weights. Estimates are averaged across months, and

therefore are equivalent to the average across RW (0) to RW (11).

A.3. The Value-Weighted Method

As noted, Blume and Stambaugh’s theoretical analysis focuses on price-weighted

portfolios. While researchers rarely study price-weighted portfolios, they often study

value-weighted portfolios. We consider VW when weights are based on prior-period

market values, wnt = SnP
0
nt−1, where Sn is the number of shares outstanding for firm

n. Note that, ignoring dividends, VW portfolios also reflect a “buy-and-hold” strategy.

In addition, since researchers commonly form value-weighted portfolios on an annual basis,

we consider the properties of a annual-value-weight (AVW ) method that relies on prior

December market values. Note though that, unlike IEW , RW , and VW , the AVW

method does not rely on the time t − 1 price, except for the first period after portfolio

formation.

B. The Framework

We next provide a formal assessment of the large sample properties of uncorrected and

corrected estimates of mean returns and of cross-sectional regression slope coefficients.

The true (gross) return for each security n ∈ {1, 2, ..., N} at time t ∈ {1, 2, ..., T} is

assumed to be a linear function of observable variables,

Rnt = 1 + α + X
′

ntβ + εnt, (3)

where α is a scalar, β is a K − 1 -dimensional vector of parameters, εnt is a white noise

random error term, and Xnt is a K−1 -dimensional vector of firm parameters or market-
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wide factors.9

If X̃t = (1,Xt), where 1 is theN -dimensional vector of ones, Xt = (X1t, X2t, . . . ,XNt)
′,

and β̃ = (1 + α, β′)′, we can write the system of equations for the returns of firms 1 to

N as

Rt = X̃tβ̃ = (1 + α)1 + Xtβ + εt. (4)

In what follows, unless otherwise noted the expectation and covariance operators are

applied cross-sectionally. Let µt denote the time-t true cross-sectional mean (gross) return,

i.e., µt = 1 + α + E(X
′
ntβ). Observed prices, P 0

nt, deviate from “true” prices, Pnt:

P 0
nt = Pnt(1 + δnt), where δnt = σnδ

0
nt, and δ0nt has a mean of zero and is independent

of (Xmτ , σ
2
n, σ

2
m) for any n 6= m or t 6= τ . We also assume that the noise variance

parameters σ2
n are draws from a common distribution across stocks, i.e., σ2

n ∼ (σ2,Σ) for

all n = 1, 2, . . . , N .

In the most general specification considered we allow:

δ0nt = ρδ0nt−1 +
√

1− ρ2(
√
cθt +

√
1− cξnt), (5)

where E(ξnt) = E(ξ3nt) = 0, V ar(ξnt) = V ar(θt) = 1, and E(θt) = E(θ3t ) = 0. This

specification allows for potential serial correlation in noise through the ρ parameter, and

allows for a potential common, market-wide, component in noise through the c parameter,

while ensuring that the total variance of noise, σ2
n, remains constant across ρ and c. If

c = 0 the noise in prices is completely idiosyncratic, while if c = 1 there is no idiosyncratic

component in the noise.

The observed (gross) return for stock n at time t is:

R0
nt = Rnt

1 + δnt
1 + δnt−1

= RntDnt, (6)

where Dnt = 1+δnt
1+δnt−1

.
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We evaluate the properties of weighted least squares estimators of the parameters, β̃ of

the linear specification (4) and of the time-t cross-sectional mean return, µt. With slight

abuse of notation, E(xnt) represents plimN→∞
1
N

∑N
n=1 xnt for the random variable xt.

Similarly, cov(xnt, ynt), is the plimN→∞ of 1
N

∑N
n=1 xntynt −

(
1
N

∑N
n=1 xnt

)(
1
N

∑N
n=1 ynt

)
.

We delineate the few cases where we refer to a time-series parameter by placing a bar

over the relevant operator.

When estimating the cross-sectional mean (in the time t cross-section), the weighting

scheme implies that µWLS,t =
∑N
n=1 wntR

0
nt∑N

n=1 wnt
, equal to

E(wntR0
nt)

E(wnt)
in the limit. In a

regression setting, when the weights wnt are used in a weighted least squares (WLS)

estimation of expression (4), the resulting (vector) parameter estimate is β̃WLS,t =

[X̃′tWtX̃t]
−1X̃′tWtR

0
t . Here, Wt is a N × N diagonal matrix, with the weights wnt

on the diagonal. We are interested in the asymptotic properties of the estimator, or,

in plimN→∞β̃WLS,t = [E(X̃′ntX̃ntwnt)]
−1E(X̃′ntwntR

0
nt) and in how it compares to the

estimator obtained from an OLS regression.

C. Properties of the Cross-sectional Estimators

We assess the asymptotic properties of estimators that rely on these weighting methods

under a set of simplifying assumptions that allow for closed-form solutions. While the

simplifying assumptions are somewhat restrictive, they convey the key intuition regarding

the methods’ effectiveness. We subsequently assess the effect of relaxing the simplifying

assumptions by means of simulations. We initially focus on the case where the noise

outcomes are independent across securities but potentially dependent through time. We

then allow for cross-sectional commonality in noise realizations. All proofs regarding

cross-sectional estimators are provided in Appendix B.
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C.1. The Estimators when Noise is Independent Across Securities: c = 0

Mean Estimates

PROPOSITION 1: If σ2
n and X̃nt are independent and Cov(Rnt, Rnt−1) = 0, then

weighted cross-sectional averaging (in period t) yields estimates with the following

properties (The approximations result from second-order Taylor series expansions.):

• plimN→∞ µEW,t ≈ µt + µtσ
2(1− ρ),

• plimN→∞ µRW,t ≈ µt + µt
σ2(1−ρ)ρ
1+σ2(1−ρ) ,

• plimN→∞ µRW (s),t ≈ µt + µt
σ2(1−ρ)ρs
1+σ2(1−ρs) , and

• plimN→∞ µVW,t = E(PntSn)
E(Pnt−1Sn)

.

Proof : See Appendix B.

Note that Cov(Rnt, Rnt−1) would be zero if either β̃ = 0 or if X̃nt does vary across n,

either of which implies that expected returns are equal across n. Proposition 1 shows that

the equal-weighted cross-sectional mean observed return is strictly upward biased, with

the bias increasing in σ2 and decreasing in ρ. The RW (s) estimator of the cross-sectional

mean is consistent if ρ = 0, but is upward biased if ρ > 0. Importantly, however, the

RW (s) bias is strictly smaller than the OLS bias for any s and ρ. Further, the bias in

the RW (s) estimator is decreasing in s.

If Sn is independent of prices, then plimN→∞ µVW = E(Pnt)
E(Pnt−1)

and the VW estimate’s

bias depends on Cov(Rnt, Pnt−1). However, under the assumption of Cov(Rnt, Rnt−1) = 0,

it follows that Cov(Rnt, Pnt−1) = 0 as well. Consistency of the VW estimate follows from

the expression E(Rnt) = E(Pnt)
E(Pnt−1)

− cov(Rnt,Pnt−1)
E(Pnt−1)

.

Regression Estimates

PROPOSITION 2: If σ2
n and X̃nt are independent, then application of WLS cross-

sectional regression estimation (in period t) provides estimators with the properties:

18



• plimN→∞β̃OLS,t ≈ β̃ + σ2(1− ρ)β̃,

• plimN→∞β̃RW,t ≈ β̃ + σ2(1−ρ)ρ
1+σ2(1−ρ) β̃,

• plimN→∞β̃RW(s),t ≈ β̃ + σ2(1−ρ)ρs
1+σ2(1−ρs) β̃,

• plimN→∞β̃VW,t = β̃.

Proof : See Appendix B.

Proposition 2 shows that OLS regression coefficients are strictly biased in the direction

of the true coefficients, with the bias increasing in σ2 and decreasing in ρ. The RW (s)

regression coefficient estimator is consistent if ρ = 0, but is biased in the same direction

as the OLS estimators if ρ > 0. Importantly, however, the RW (s) bias is strictly smaller

than the OLS bias for any s and ρ. With respect to ρ, RW (s) achieves maximum bias at ρ

close to s
s+1

. The VW estimator is consistent for any ρ. Thus, under these assumptions all

of the weighted estimators perform better than the OLS estimator, and the VW estimator

performs best.

C.2. Allowing for Cross-sectional Commonality in Noise

We now consider the effect of allowing for c > 0, when the noise in prices is specified

as in expression (5). We continue to assume that σn is independent of X̃nt for all n and

all t. We further assume that the multivariate process X̃nt is stationary (e.g., E(X̃′ntX̃nt)

does not depend on t.) Note that the period t estimator is conditional on the period

t outcome on the common component of noise, θt, and thus need not be consistent.

We therefore assess for each estimator the unconditional expectation (which we denote

by Ē) of the time-t cross-sectional plimN→∞. Thus, Ē denotes the probability limit,

plimT→∞, of the time-series average of the cross-sectional plim’s. Because the estimates

are functions of stationary random variables, unbiasedness of the cross-sectional plim’s

implies sequential consistency of estimators obtained by time-series averaging of the cross-

sectional estimates.10 Also, let µ = Ē(µt).
11
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Mean Estimates

PROPOSITION 3: If Cov(Rnt, Rnt−1) = 0 for all t, and Sn is independent of prices, then

the application of weighted cross-sectional averaging leads to estimates with the following

properties

• Ē(plimN→∞ µEW,t) ≈ µ+ µσ2(1− ρ),

• Ē(plimN→∞ µRW,t) ≈ µ+ µσ2(1− ρ)(ρ+ c(1− ρ)),

• Ē(plimN→∞ µRW (s),t) ≈ µ+ µσ2((1− ρ)ρs + c(1− 2ρs + ρs+1)),

• Ē(plimN→∞ µVW,t) = µ+ µσ2c(1− ρ).

Proof : See Appendix B.

Proposition 3 shows that the bias in the equal-weighted cross-sectional mean return

remains positive, and is unaffected by the degree of commonality in noise. All of the

weighted estimators are adversely affected by commonality in noise, and none is consistent

when c > 0. Blume and Stambaugh (1983) observed that their proposed correction is

effective due to diversification of noise. The result here confirms this intuition, and shows

that it applies to each of the corrections.

Importantly, the bias in the RW estimator of the cross-sectional mean return is strictly

smaller than that of the OLS estimate as long as |c + ρ − cρ| < 1. Focusing on the

economically relevant cases where c and ρ range from 0 to 1, the RW estimator converges

to the OLS estimate when either c = 1 (the noise is perfectly correlated across securities)

or ρ = 1 (the noise in prices is permanent), but is otherwise strictly less biased than the

OLS estimate. Under these assumptions the magnitude of the VW bias is always smaller

than the RW (s) bias.
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Regression Estimates

PROPOSITION 4: If Cov(Rnt, Rnt−1) = 0 then application of WLS regression leads to

estimators with the following properties

• Ē(plimN→∞β̃OLS,t) = β̃ + σ2(1− ρ)β̃,

• Ē(plimN→∞β̃RW,t) = β̃ + σ2(1− ρ)(ρ+ c(1− ρ))β̃,

• Ē(plimN→∞β̃RW(s),t) = β̃ + σ2((1− ρ)ρs + c(1− 2ρ2 + ρs+1))β̃,

• Ē(plimN→∞β̃VW,t) = β̃ + σ2(1− ρ)cβ̃.

Proof : See Appendix B.

The properties of the regression parameters echo those of the cross-sectional means. In

particular, OLS estimates of the regression parameters remain biased, and are unaffected

by commonality in the noise. The time-series average of the weighted regression estimators

are adversely affected by commonality in noise, and all are sequentially inconsistent when

c > 0. The VW is again less biased than the OLS and the RW (s) estimators. The RW

estimator is less biased than the OLS estimator as long as |c+ ρ− cρ| < 1.

D. Relaxing the Restrictive Assumptions: Simulation-Based Evidence

The theoretical results reported in the previous section relied on restrictive assump-

tions, including an absence of cross-sectional variation in mean returns, and independence

of the variance of noise from regression explanatory variables. We therefore assess the

magnitude of potential biases and compare the performance of the proposed estimators

using a simulation analysis that relaxes all of these assumptions to incorporate realistic

parameters.

D.1. Calibration of the Simulation

Two of the most important parameters in terms of determining the magnitude of the

biases attributable to noisy prices and the effectiveness of the proposed correction are the
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cross-sectional average noise standard deviation, σ, and the magnitude of cross-sectional

variation in mean returns. With regard to the former, we rely on Brennan and Wang

(2010), who provide what appears to be the most relevant evidence available to date.

They study monthly returns to CRSP common stocks, and estimate σ = 0.06 (Brennan

and Wang (2010, Table 2)). We assign a σn to each stock from a uniform distribution

on [0, 0.12].12 We also accommodate dependence between σn and regression explanatory

variables, again relying on estimates provided by Brennan and Wang. In particular, we

choose parameters such that the correlation between σn and firm value is -0.235.13

We construct simulated true monthly returns according to

Rnt − 1 = α + βn(Rmt − 1) + γilliqIn + γvVnt−1 + εnt, (7)

where Rm - 1 is the net market return, with mean equal to 1% and standard deviation

of 5.5%, In is a (demeaned) measure of illiquidity, set equal to (σn - σ), and Vn is the

(demeaned) market value of firm n. That is, we accommodate a market return premium

as implied by the CAPM, as well as the empirical regularities that returns are related to

illiquidity and to firm size. The standard deviation of firm specific returns, εnt, is set to

0.045.

Parameters are selected so that the standard deviation, across stocks, of the expected

true monthly return is 1%. This parameter is potentially important, as the theoretical

results above rely on the simplifying assumption that the cross-sectional covariance

Cov(Rnt, Rnt−1) is zero.14 Relaxation of this assumption potentially harms the properties

of the weighted least squares estimators. We believe that a cross-sectional expected

return standard deviation of 1% is on the high end of the range that could be considered

realistic, as the two standard deviation range of expected returns varies from -1% to 3%

per month.15

Given these parameters, we construct simulated true returns for each of the N = 1000
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stocks, for periods t = 0 to 12, which accommodates evaluation of the IEW method

with rebalancing after twelve months. For each true return, Rnt, we compute an observed

return according to (6), when noise is specified according to expression (5). We iterate

across values of ρ and c ranging from 0 to 0.9.

Having created simulated observed returns for periods t = 1 to 12, we estimate the

cross-sectional mean return for each period based on EW , IEW , RW , and VW methods,

and cross-sectional slope parameters by regressing the simulated observed returns on the

market return, illiq, and lagged firm value by OLS, as well as by WLS using the IEW ,

RW , and VW weights. Mean returns and slope coefficients are averaged across the twelve

periods and saved. The entire simulation is repeated 30,000 times, and we report averages

across the 30,000 repetitions.

The properties of the OLS, RW , and VW methods are time invariant, but IEW

properties are not. As noted, IEW is equivalent to equal-weighting in t = 1, and is

equivalent to the RW (t − 1) method in subsequent periods. We report IEW results as

the average across t = 1 to t =12, and also when period 1 is excluded.

D.2. Simulation Results

The key insight gained from the simulations is that the properties of the various

estimators are generally consistent with the theoretical results derived above, despite

the relaxation of various simplifying assumptions. We first discuss the properties of the

regression slope coefficients estimated from the simulated observed returns. We focus

our discussion on the estimation of βilliq, as this coefficient is most directly affected by

the noise in prices. Figure 1 displays the average difference between the slope coefficient

estimated by different weighting methods and the true coefficient estimate, for ρ (the AR1

coefficient in the noise) ranging from 0 to 0.9.

<Figure 1 about here>
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Panel A considers the case when c (the common component in noise) is fixed at

zero. We observe that the bias in the coefficient estimated by OLS is largest (over 0.12,

compared to a true coefficient of 0.15) when ρ = 0, and declines as ρ increases. The

most important result observed on Panel A is that all three weighting methods provide

estimates that are much less biased than OLS, for any ρ. In fact, the VW estimate is

consistent in this case. The relative performance of the RW and IEW methods depends

on the inclusion of period t =1. With the first period included, the IEW slope coefficient

contains slightly more bias than RW . If the first period is excluded, the IEW slope

contains slightly less bias (Figure 1(b)).

We note that the RW estimate of the slope coefficient is consistent when ρ = 0, but

otherwise contains a small bias that achieves its maximum at ρ = 0.5. Importantly,

though, even at the maximum, the bias in the RW estimate is less than one tenth as

large as the unadjusted (OLS) estimate.

Panel B of Figure 1 presents estimated slope coefficients for ρ (the AR1 coefficient

in noise) ranging from 0 to 0.9 and for c (the weight on the common component in

noise) also ranging from 0 to 0.9. The results confirm that (i) the bias in the OLS slope

coefficient is invariant to c, and (ii) all of the weighted estimates become more biased as c

increases. Importantly, all of the weighted estimates remain strictly less biased than the

OLS estimates, for any set of parameters.

Comparing across methods for correcting for bias, we observe that the VW method

generally contains the least bias. The relative performance between RW and IEW

depends on the inclusion of period 1 estimates in the IEW average. For completeness,

Panel C presents the differences of the VW and IEW estimators from the RW estimator.

We note, though, that differences across the corrected estimates are always small relative

to the difference between the uncorrected (OLS) and the corrected estimates.

In summary, the simulations demonstrate that all three weighting methods provide

large improvements over OLS estimation method when estimating regression slope
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coefficients. There is little meaningful economic difference across the corrected estimates,

particularly if the first month is excluded from the IEW estimation.

We turn next to simulation results with regard to estimation of the cross-sectional

mean return, displayed in Figure 2. We observe that the VW method provides downward

biased estimates when c = 0 (Figure 2, Panel A). This reflects that the true returns

incorporate a size effect, whereby the larger firms have lower expected returns. The RW

method in this case gives estimates that are only slightly upward biased, and performs

best overall. The IEW estimate of the cross-sectional mean return contains more bias

than the RW method, even when period t = 1 is excluded, see Figure 2(b).16

<Figure 2 about here>

As was the case for regression slope coefficients, the bias in any of the corrected

estimates of the cross-sectional mean return grows with c. Still, all of the corrected

methods provide dramatic improvement over the equal-weighted estimation (except for

when both ρ and c are close to 1). Also, as shown in Figures 2(c) and 2(d), differences

between the RW , VW , and IEW estimates are generally not economically meaningful.

The available empirical evidence indicates that the degree of persistence in the noise

in prices is modest. Evaluating monthly returns to CRSP common stocks, Brennan and

Wang (2010) report a cross-sectional mean ρ estimate equal to 0.07, while Hendershott,

Li, Menkveld, and Seasholes (2011) study monthly returns to NYSE stocks and report a

mean estimate of 0.15. Given c = 0, the biases in the corrected estimates are small in any

case, and are very close to zero for ρ in this range. We conclude from this analysis that

the corrected measures (VW , RW , and IEW ) are in this case robust to the potential

existence of autocorrelation in the noise contained in prices, and provide estimates that

are essentially free of bias.
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In contrast, commonality in noise, c > 0, potentially affects the corrected estimates

more substantively. Unfortunately, we are not aware of any direct empirical estimates of

the degree of commonality across stocks in the noise component of prices.17 This analysis

supports the conclusion that uncorrected (EW or OLS) return premium estimates contain

substantial biases that can be mitigated by the corrections discussed here. However, if the

noise in prices contains a substantial common component, then the methods considered

here only partially correct for the biases.

III. Data Description and Anticipated Effects of Noise

To assess the empirical relevance of biases attributable to noisy prices and the effect

of implementing the proposed corrections, we study five firm-level explanatory variables

that are broadly representative of those examined in the empirical asset pricing literature:

firm size, trading volume, illiquidity, share price, and the book-to-market ratio. This

analysis should be viewed as illustrative that the potential biases attributable to noisy

prices are large enough to matter. The effects of implementing the corrections in other

empirical applications are yet to be assessed. We study monthly returns in excess of the

treasury interest rate for U.S. equities using CRSP data and the Compustat Industrial

North America files. The sample spans the period July 1963 through December 2009, and

consists of common stock (CRSP shrcd=10, 11 and 12) of NYSE-, Amex- and Nasdaq-

listed companies (CRSP exchcd = 1, 2 and 3). The analysis of monthly returns considers

the period January 1966 to December 2009, as the earliest sample months are used to

construct systematic risk estimates.

A. Anticipated Direction of Bias

Asparouhova, Bessembinder, and Kalcheva (2010) show that the key determinant of

the direction of the bias in uncorrected estimates of return premia is the sign of the cross-

sectional covariation between the variance of the noise in prices, σn, and the firm attribute
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considered. To the extent that researchers can estimate or form conjectures regarding the

sign of this covariance, the direction of the return premium bias can be anticipated.

Blume and Stambaugh (1983) have shown that biases attributable to noisy prices

impart downward bias to the empirically negative relation between firm size and returns.

This result is anticipated if the prices of small firms contain more noise, on average. Black

(1986) conjectures that low share prices will be associated with substantially more noisy

prices. If so, we predict a positive bias in estimates of the relation between returns and

inverse share price. Empirical measures of illiquidity are likely to be strongly positively

related to the variance of noise in prices, implying upward bias in associated return

premium estimates. Trading volume is often interpreted as a measure of liquidity, and

should therefore be negatively correlated across stocks with the variance of noise in prices.

We conjecture that both market value of equity and book value of equity are negatively

correlated across stocks with the variance of noise in prices. We therefore do not offer a

prediction as to the sign of the covariance between the market-to-book ratio and noise,

or of the possible bias in estimates of the “value premium.”

B. Variable Construction

We consider five firm-level explanatory variables that are broadly representative of

those examined in the empirical asset pricing literature. The following variables are

constructed:

• Size - the natural logarithm of the market value of the equity of the firm as of the

end of the second to last month.

• log(BM) - the natural logarithm of the ratio of the book value of equity plus deferred

taxes to the market value of equity, using the end of the previous year market and

book values.18

• Dvol - the natural logarithm of the dollar volume of trading in the security in the
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second to last month.19

• InvPrice - the natural logarithm of the reciprocal of the share price as reported at

the end of the second to last month.

• Illiq - the Amihud (2002) illiquidity measure, computed as the ratio of daily absolute

return to daily dollar volume multiplied by 1,000,000, and averaged over all days

with nonzero volume in the previous year. Illiq and Dvol are standardized as per

Eq. 3 and Eq. 4 in Amihud (2002).

We include in the sample for a given month those stocks that satisfy the following

criteria: (i) return data for the current month of December and in 24 of the previous

60 months is available on CRSP, and (ii) data is available to calculate the market

capitalization, share price, and dollar volume as of the previous month. Following Fama

and French (1992), we exclude financial firms from our sample. Nasdaq stocks generally

enter the sample in 1983, due to the requirement that trading volume data be available.

Firms are assigned to portfolios based on attributes measured as of end of the prior July.

Following Brennan, Chordia, and Subrahmanyam (1998), firm-level explanatory variables

are expressed as deviations from their monthly cross-sectional mean. We also include

market Beta as a measure of risk in our regression analysis.20

Panel A of Table I reports the time-series averages of the cross-sectional means,

medians and standard deviations for a number of key empirical variables, before log

transformations, for the full sample. The mean monthly return is 0.827%. The mean

market capitalization for the sample stocks is $1.182 Billion. Firm size, share price,

illiquidity, and trading volume exhibit positive skewness, as evidenced by means that

substantially exceed medians.

<Table I about here>
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Panel B of Table I reports time-series averages of the monthly cross-sectional

correlations. The largest correlations are between Size and Dvol (0.886) and Size and

InvPrice (-0.783). The correlation of Illiq with Size and Dvol is -0.323 and -0.339,

respectively. Firm size and the book-to-market ratio exhibit a substantial negative average

correlation (-0.287), implying that firms that are small in absolute market capitalization

tend to also be small relative to the book value of their assets.

IV. Empirical Results

A. Returns to Attribute-Sorted Portfolios

In this subsection we assess the effect of noisy prices on return premium estimates

obtained by the common method of comparing mean returns across attribute-sorted

portfolios. The portfolio returns are weighted based on the variables discussed previously.

Table II reports mean returns to the first and tenth decile portfolios, and to the “hedge

portfolio” that is long the tenth portfolio and short the first portfolio, for the five firm-level

explanatory variables.

<Table II about here>

We focus on univariate portfolio sorts because it is possible to form reasonably strong

conjectures as to the likely correlation, and hence the direction of noise-induced bias,

between the variance of the noise in prices and individual explanatory variables. We

subsequently report univariate and multivariate regression results that include various

combinations of firm characteristics as regressors.
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A.1. Equal-Weighted Portfolio Returns

Mean portfolio returns obtained when security returns are weighted equally are

consistent with the findings of previous studies. Focusing on the column labeled 10−1 for

the mean returns to hedge-portfolios, we observe the well documented “size effect” (mean

hedge portfolio return is 1.425% per month with an associated t-statistic of 4.43), and

the “value premium” (mean hedge portfolio return of 1.369% with associated t-statistic

of 6.03). For illiquidity-sorted portfolios the hedge portfolio return is 1.139% per month,

with t-statistic of 3.95. Consistent with the regression-based results reported by Brennan,

Chordia, and Subrahmanyam (1998), we observe a strong share price effect, as returns to

the hedge portfolio (low share price decile less high share price decile) are positive and

significant (1.252% per month, t-statistic = 3.27). Also consistent with their results, we

observe a trading volume effect, as the mean return to the hedge portfolio that is long

high-volume stocks and short low-volume stocks is -1.198% per month, with a t-statistic

of -4.52.

A.2. Adjusting For Biases Due to Noise in Prices

The main focus of this paper is on correcting empirical estimates for the effects of

noisy prices through the use of appropriate weighting methods. Since hedge portfolio

returns provide evidence as to whether a given attribute is associated with cross-sectional

variation in mean returns, we mainly discuss the difference in hedge portfolio returns

across weighting methods, and present the results in a matrix in the center columns of

each Panel of Table II. For each variable of interest, we compute the differential in mean

hedge portfolio returns across all pairs of weighting variables. For example, on Panel A

of Table II, the value -0.463% in the column labeled RW and row labeled EW is the

difference in the hedge portfolio return obtained by the RW method (-0.961%) and that

obtained by the EW method (-1.425%). A corresponding hedge portfolio differential is
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reported for each pair of weighting methods, along with associated t-statistics for the

hypothesis that the associated differential is zero.

The key finding that can be observed in Table II is that every return premium

estimated on the basis of equal-weighted portfolio returns is larger (in absolute magnitude)

than any of the corrected estimates of the corresponding premium. The differentials in

the estimated premia obtained by EW as compared to any of the corrected estimates are,

with but a single exception, uniformly highly statistically significant, as evidenced by the

t-statistics in the rows labeled EW on the right side of Table II.21 Of particular interest

are differentials across EW and RW , since each pertain to equal-weighted mean returns,

the former uncorrected and the latter corrected for bias. T -statistics for the EW − RW

differential range in absolute value from 2.21 (for the book-to-market ratio) to 15.04 (for

inverse share price). T -statistics for the EW−VW differential are also large, but it should

be noted that this differential reflects both the effect of removing bias and the shift to

placing more weight on larger stocks.

The economic relevance of the bias attributable to noisy prices varies substantially

across explanatory variables. The bias is quite relevant for firm size, share price, trading

volume, and illiquidity. The bias is least relevant for the book-to-market ratio. Focusing

in particular on the differential between EW and RW mean returns, Panel A shows that

noise in prices explains about one third of the apparent size effect in monthly returns,

as the estimated bias is -0.46% per month, (t-statistic = -13.52), compared to an equal-

weighted hedge portfolio return of -1.43% per month. In contrast, results reported on

Panel B indicate only a modest upward bias in the equal-weighted estimate of the “value

premium.” While the t-statistic for equal-weighted less return-weighted hedge portfolio

return is significant, the economic magnitude of the bias estimate, 0.09% per month, is

small relative to the estimated premium of 1.37% per month.

Panel C shows that noise in prices is particularly relevant for the apparent return

premium associated with share price, as the bias (EW − RW ) is estimated to be 0.61%
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per month (t-statistic = 15.04), half as large as the apparent return premium of 1.25%

per month. Share prices are not randomly distributed across stocks, but are influenced

by managers’ strategic choices, including IPO offer prices and stock split policy. It would

therefore represent something of a puzzle if return premia were related to share prices

(as implied by the EW t-statistic of 3.27), as it would suggest that firms could reduce

the return premium and their cost of capital by altering share price. We observe that

none of the bias-adjusted estimates support the existence of a return premium associated

with share price, as the bias-corrected hedge portfolio t-statistics range from 0.40 (VW )

to 1.74 (RW ).

The results in Panel D indicate that the apparent relation between returns and trading

activity is also partially attributable to noise in prices. The bias, based on the EW −RW

differential, is estimated at -0.35% per month, which comprises about a third of the

uncorrected estimated premium associated with trading activity. Finally, Panel E shows

that the magnitude of the upward bias in the estimate of the return premium for Illiq

is considerable, as return-weighted hedge portfolio returns exceed equal-weighted hedge

portfolio returns by 0.36% per month (t-statistic = 12.77).

Weighting by t− 1 Value

As noted, shifting from EW to VW entails two distinct effects: removal of bias due

to noisy prices, and the shift to weighting large stocks more heavily. The EW − VW

differential in mean returns can be decomposed into the EW − RW differential, which

entails only the removal of bias, and the VW − RW differential, which is an estimate

of the effect of the shift in weights alone. Focusing for example on the estimated return

premium associated with firm size, the EW −VW return differential of -0.91% per month

can be decomposed into the EW − RW differential (removal of bias) of -0.46% and the

VW −RW (firm-size weighting effect) of -0.45% per month. Similar conclusions apply for

all five firm characteristics, in that the effect of removing bias (the EW−RW differential)
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is always significant (absolute t-statistics range from 2.21 for the book-to-market ratio to

15.04 for inverse share price), while the pure weighting effect (the VW −RW differential)

is also always significant (absolute t-statistics range from 2.05 for book-to-market ratio to

5.14 for firm size.)

Return premia estimates obtained by the IEW method are broadly similar to those

obtained by the RW method. The IEW and RW hedge portfolio returns are uniformly

smaller in absolute magnitude as compared to the unadjusted EW estimates, reflecting

that both methods are largely effective in mitigating the bias due to noisy prices. The

IEW and RW hedge portfolio returns are uniformly larger than the VW estimate, which

reflects that IEW and RW both estimate the true equal-weighted, rather than value-

weighted, mean return.

Annual Value-Weighting

Finally, the differential in VW vs. AVW hedge portfolio returns is of interest. The

VW and AVW methods both weight large-capitalization securities more heavily. To the

extent that large firms tend to have less noisy prices the effect will be to mitigate the bias

attributable to noise. However, as noted, the key to eliminating the bias due to noisy

prices is to use a weighting variable that includes the time t − 1 share price. The VW ,

RW , and IEW methods do so. The AVW method does so only for January returns.

Comparing mean returns across the VW and AVW methods as reported on Table II,

we see that the differential is minimal in the case of large firms (size portfolio 10), high-

share-priced firm (inverse price portfolio 1), high-trading-volume firms (volume portfolio

10), and liquid firms (illiquidity portfolio 1). In contrast, substantial differentials in mean

returns are observed across the VW and AVW methods for small, low-priced, illiquid,

and low volume portfolios. For example, the mean VW return for size portfolio 1 is

0.89%, while the mean AVW return for the same portfolio is 1.24%. Since the estimates

are based on the same stocks over the same time intervals, and each places greater weight
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on large firms, we conclude that the return differential is attributable to the failure of

the AVW method to eliminate bias attributable to noisy prices in months other than

January.

Since the AVW method allows bias to remain in the mean return to the least liquid

(or lowest priced) portfolio, the hedge portfolio return estimated using AVW remains

biased. While the VW − AVW hedge portfolio differential is not statistically significant

for the illiquidity ratio (t-statistic = -0.98) and is only marginally significant for the book-

to-market ratio (t-statistic = 1.73), the differential is significant in the case of firm size

(t-statistic = 5.40), inverse price (t-statistic = -2.03), and trading volume (t-statistic =

4.09). The implication is that researchers who wish to eliminate the effect of noisy prices

by use of value-weighting should weight returns by time t−1 value, not by value measured

at an earlier date when portfolios are formed.

A.3. Further Analysis and Robustness

The Effect of Excluding Low-Priced Securities

Some authors, including Jegadeesh and Titman (2001), Amihud (2002), and Pástor

and Stambaugh (2003) mitigate the effects of noisy prices by excluding relatively illiquid

securities (in particular those with low share prices) from their analyses. In Table III we

report portfolio mean returns after excluding stocks with share price less than $5 as of

the end of the preceding month.

<Table III about here>

The results indicate that eliminating low-priced securities is very effective in reducing

the bias attributable to noisy prices. Comparing EW hedge-portfolio mean returns across

Table II and Table III, we observe that the elimination of low-priced stocks always reduces
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the absolute magnitude of the EW hedge portfolio return, and that the reduction is always

statistically significant. The magnitude of the reduction in bias is large. For example,

for firm size the EW −RW hedge portfolio return differential is reduced from 0.46% per

month without the price filter to 0.06% per month with the price filter. Similarly, for

inverse share price, the EW − RW hedge portfolio return differential is reduced by the

price filter from 0.61% per month to 0.06% per month. However, despite the reduction,

return premia estimated by EW remain biased away from zero for every explanatory

variable except the book-to-market ratio. Absolute t-statistics for the EW − RW hedge

portfolio differential on Table III range from 4.97 for illiquidity to 6.31 for firm size.

While the results reported on Table III support the conclusion that eliminating low-

priced stocks from the sample substantially reduces the bias in EW estimates attributable

to noisy prices, they also indicate a hidden cost of doing so. In particular, inference

regarding the existence, magnitude, and functional form of return premia is substantially

affected. Bias-adjusted hedge portfolio returns reported on Table III are uniformly smaller

in absolute magnitude as compared to corresponding estimates on Table II, and the

differentials across tables are often statistically significant. For example, the RW hedge

portfolio return associated with firm size reported on Panel A of Table II is -0.96% per

month with an associated t-statistic of -3.07, compared to a corresponding estimate of

-0.29% per month with a t-statistic of -1.62 on Table III. Similar effects are observed on

Panel D with respect to the bias-adjusted (RW ) estimates of the hedge portfolio return

for trading volume, which are -0.85% per month (t-statistic = -3.28) without the price

filter, versus -0.38% per month (t-statistic = -2.09) with the price filter.

We conclude that a hidden cost of reducing noise-related bias by excluding low-priced

stocks is the loss of valuable information regarding actual return premium contained in

those stocks. Further, the lost information includes indications that the return premia

are not linear in the attributes, as evidenced by substantial reductions in the absolute

magnitude of the hedge portfolio returns, not just reductions in statistical significance
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due to a smaller sample size.

Bias-Adjustment and the Carhart-Fama-French Four Factor Model

Empirical results reported to this point have focused on raw returns (in excess of

Treasury interest rates), and thus have not made any allowance for known sensitivities of

returns to market-wide risk factors. We next estimate for each decile portfolio “alphas”

(intercepts), when portfolio returns are computed on an EW , RW , and VW basis, by

regressing portfolio returns on the Carhart-Fama-French factors (Carhart, 1997). This

analysis allows examination of two issues. First, we can assess whether key results with

regard to the effects of adjusting for noisy prices are sensitive to allowances for return

sensitivity to the four factors. Second, we can assess whether security returns that have

been adjusted for biases attributable to noisy prices are consistent with the implications

of the four factor model.

Table IV reports alphas for portfolios 1, 10, and the 10−1 hedge portfolio. The results

indicate that adjusting portfolio returns for sensitivity to the Carhart-Fama-French four

factors has essentially no effect on the magnitude of the various biases attributable to noise

in prices. In particular, the bias estimates and associated t-statistics for the EW − RW

differential are uniformly little altered when focusing on alphas as compared to mean

returns reported in Table II.

<Table IV about here>

The adjustment of returns for sensitivity to the Carhart-Fama-French factors does

reduce the magnitude of some return regularities that survive the correction for noise in

prices. Focusing on the bias-corrected results (RW ) in the column labeled 10 − 1, we

observe that alphas are meaningfully closer to zero as compared to mean returns in the
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case of firm size, book-to-market ratio, and trading volume. In the case of inverse share

price and illiquidity ratio, the alpha estimate is statistically indistinguishable from zero,

indicating that the combination of the bias adjustment and allowance for sensitivity to

the Carhart-Fama-French factors has eliminated the apparent return premium contained

in the 10− 1 hedge portfolio.

To provide a more rigorous test of the hypothesis that the Fama-French-Carhart four

factor model explains the cross-section of bias-adjusted returns, we report also the p-value

obtained when implementing the F -test of Gibbons, Ross and Shanken (1989). This

statistic pertains to the hypothesis that the regression intercepts for all ten attribute-

sorted portfolios are simultaneously zero.

The resulting p-values indicate rejection of the four-factor model for all five firm

attributes, both when portfolios are EW and RW . The former indicates that the four-

factor model fails to fully explain equal-weighted portfolio returns. The latter indicates

that the existence of noise-related bias in the EW returns is not the sole explanation, as

the data continues to reject the model even when the equal-weighted returns are adjusted

for bias attributable to noisy prices. Notably, however, the p-values do not indicate

rejection of the four-factor model for any of the five attributes when firms are weighted

by prior-period value. We conclude that the four-factor model can explain bias-adjusted

returns to attribute-sorted portfolios, but only when the information contained in returns

to smaller stocks is deemphasized by means of value-weighting.

January vs. Non-January Months

Numerous studies have documented return anomalies and/or strengthened empirical

relations in the month of January. For example, Eleswarapu and Reinganum (1993) find

a statistically significant relation between average return and bid-ask spread for NYSE

stocks only in January, while Keim (1983) shows that the return premium associated with

firm size is much stronger in January than in other months. Table V reports mean returns
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to attribute-sorted portfolios on an EW , RW , and VW basis, separately for the month

of January and for non-January months.

<Table V about here>

The broadest observation regarding the mean return differentials reported on Table V

is that every empirical relation is stronger in January than in other months. In particular

the biases contained in EW returns attributable to noisy prices are uniformly larger in

January. In the case of firm size, for example, the bias (estimated by the EW − RW

hedge portfolio differential) is -1.36% in January versus -0.38% in non-January months.

The larger bias in January months could reflect that prices contain more noise in January,

or that the cross-sectional correlation between noise and firm attributes is increased in

January. However, the bias due to noisy prices is not confined to January. With the

exception of portfolios sorted on the basis of book-to-market, statistically significant bias

attributable to noisy prices is observed in non-January months as well, as t-statistics for

the EW − RW hedge portfolio differential in range in absolute value from 10.75 (for

trading volume) to 15.06 (for inverse share price).

These results indicate that it is particularly important to control for noise in prices

when studying January return data. This insight is relevant to researchers who consider

implementing the IEW method. As noted, the IEW method does not correct for bias in

the first period after portfolio formation. Blume and Stambaugh (1983) form portfolios

as of the end of each December, but implement their correction in daily data. While the

effect of failing to correct returns for a single day is likely to be minuscule, researchers

implementing the IEW method in monthly return data will likely want to form portfolios

at a date other than the end of December. A practical approach might be to form equal-

weighted portfolios at the end of each November, skip December, and study IEW returns
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during the following year.22

Finally, it is noteworthy that, with the exception of the market-to-book ratio, the EW

hedge portfolio return differential is insignificant in non-January months, indicating that

the data does not support the existence of reliable return premia outside January for firm

size, share price, trading volume, or illiquidy, even without correction for biases. At the

same time, the difference in EW vs. RW hedge portfolio returns remains significant,

indicating that the non-January mean returns are biased, even when they are statistically

indistinguishable from zero.

B. Fama-MacBeth Regression and Subperiod Results

We next report on Table VI the results of estimating the return premia associated with

the five firm-specific characteristics by means of Fama-MacBeth regressions of observed

returns on each of the characteristics in turn, while controlling for risk as measured by

market Beta. We report these results because such cross-sectional regressions are widely

used in the empirical literature. Further, inferences supported by the cross-sectional

regressions potentially differ from those obtained when comparing portfolio mean returns,

both because of imposition of a specific functional form, and because the analysis is

conducted at the level of individual securities rather than portfolios.23

<Table VI about here>

Since researchers most often estimate cross-sectional regressions by OLS, thereby

placing equal weight on each observation, we limit this analysis to OLS estimation and

RW estimation, where we estimate the regression by weighted-least-squares, using the

prior-period gross return as the weighting variable. As noted earlier, weighting by prior-

period gross returns corrects for the biases introduced by noisy prices, while continuing
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to give essentially the same weight to the information contained in large vs. small firm

returns. Each cross-sectional regression is estimated on a monthly basis by OLS and RW .

We record each estimate, and also the difference between the two estimates. The final

coefficient estimate is the time-series means of the monthly estimates. The associated

t-statistic is adjusted for autocorrelation in the monthly estimates as in Cooper, Gulen,

and Schill (2008).24

We report empirical results for the full (1966 to 2009) sample, and for three subsamples

comprising 1966–1982, 1983–2000, and 2001–2009. The first subperiod is comprised of

NYSE-AMEX stocks, while Nasdaq stocks enter for the second subperiod. The final

subperiod is mainly comprised of data following the 2001 introduction of decimal pricing,

which led to substantial reductions in bid-ask spreads. Comparisons across subperiods

allow evaluation of whether asset pricing anomalies have survived their initial discovery.

Further, results for the final subperiod allow evaluation of whether biases due to noisy

prices remain relevant after the 2001 decimalization of the U.S. stock markets.

The full-sample cross-sectional regressions support conclusions similar to those

obtained on the basis of portfolio return comparisons and the existing literature. In

particular, OLS regression estimates support the existence of return premia related to

firm size (OLS t-statistic = -3.80), book-to market ratio (OLS t-statistic = 5.58), inverse

share price (OLS t-statistic = -2.84), dollar trading volume (OLS t-statistic = -1.80 for

NYSE stocks and -2.90 for Nasdaq stocks), and illiquidity (OLS t-statistic = 4.02 for

NYSE stocks and 4.38 for Nasdaq stocks).

With regard to the central issue addressed in this paper, biases in estimated return

premia attributable to noisy prices, the evidence on Table VI indicates that the biases

are strong and pervasive when estimating return premia by means of cross-sectional OLS

Fama-MacBeth regressions. Full sample t-statistics for the difference between the OLS and

RW estimates range in absolute value from 2.30 for the book-to-market ratio to 13.33 for

inverse share price. And, with only two exceptions, the t-statistic for the bias (difference
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between OLS and RW estimates) is statistically significant for each explanatory variable

in each subperiod.25

We note that the estimated absolute magnitude of noise-induced biases has not

uniformly decreased across subperiods. Focusing on firm size, for example, point estimates

of the bias are -0.040, -0.081, and -0.057 for the three subperiods, and each is statistically

significant. That the bias remains significant in the post-decimalization period provides

indirect but strong evidence that the noise in security prices is attributable to sources in

addition to bid-ask spreads, such as temporary price pressure attributable to accumulated

order imbalances.

Horowitz, Loughran, and Savin (2000) document that the empirical relevance of firm

size has diminished substantially in the years since papers describing the empirical size

effect were first published. Consistent with their findings, we observe that the slope

coefficient on firm size estimated by OLS decreases in absolute value from -0.243 during the

1966–1982 subperiod to -0.105 in the 1983 to 2000 subperiod. However, the estimated OLS

coefficient for the most recent subperiod, 2001 to 2009, has again increased in absolute

magnitude, to -0.238. Both the OLS and RW coefficient estimates for the size effect are

statistically significant in the most recent period, and each is similar in magnitude to the

corresponding estimate from the 1966–1982 subperiod. Hence, we conclude that reports

of the demise of the size effect in returns may be premature.

Finally, we note that even though the return premium associated with Beta is

statistically insignificant for all regression specifications in Table VI, we detect significant

bias in the estimated return premium associated with beta. The mean differences between

OLS and RW estimates of the beta premium reported in column “DIF ” are uniformly

positive and statistically different from zero, with only the exceptions in the final sub-

period for results in Panel B and Panel C. The ability to detect a statistically significant

bias in the OLS−RW premium differential even while both the OLS and RW estimates

are insignificant reflects that there is relatively little time-series variation in the monthly
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estimates of the bias.

C. Multivariate Fama-MacBeth Regressions

A key advantage of the univariate analyses reported in the preceding sections is

that it is possible to form reasonably strong conjectures as to the likely sign of the

cross-sectional correlation, and hence the direction of noise-induced bias, between levels

of unobservable noise and individual explanatory variables. However, empirical asset-

pricing studies using the Fama-MacBeth framework typically include several explanatory

variables. Asparouhova, Bessembinder, and Kalcheva (2010) show that the direction

of the bias in the individual OLS slope coefficients estimated in multivariate return

regressions depend on the partial correlations between the variance of noise and the

regression explanatory variables. Such partial correlations will depend on the combination

of explanatory variables included in the multiple regression, and will likely be quite

difficult to anticipate a priori.

Table VII reports results obtained in multivariate Fama-MacBeth regressions of

monthly returns on various combinations of the explanatory variables. In general,

conclusions as to which explanatory variables are reliably associated with returns after

correcting for the effects of noise are sensitive to the set of explanatory variables included

in the regression. Conclusions as to the direction of the bias in regression slope coefficients

attributable to noise are similarly sensitive. Such sensitivity is to be expected given that

a number of the explanatory variables are significantly correlated with each other.

<Table VII about here>

While the univariate evidence indicates that noise in prices is associated with

significant bias for all explanatory variables examined here, the mean difference between
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the OLS and RW estimates in the multivariate specifications is not always significant.

With the full set of explanatory variables included (specification (6)), we detect significant

noise-induced bias in OLS coefficients on inverse share price, book-to-market ratio and

market beta, but not on firm size, trading volume or illiquidity. Further, conclusions as to

which explanatory variables are significantly affected by the correction for biases differs

depending on the set of explanatory variables included in the regression. For example,

the bias in the estimated coefficient on firm size is highly significant in specifications (1),

(2), (3), and (5) but not in specifications (4) and (6). Further, the “DIF” coefficient

for firm size is positive in specification (2) and negative in specifications (1), (3) and

(5). The main implication of this mixed pattern of significance is that the likely effect of

adjusting OLS coefficient estimates obtained in multivariate return regressions for biases

attributable to noisy prices will be very difficult to ascertain a priori, and will typically

need to be assessed empirically.

Finally, and perhaps most importantly, we note that inference as to whether particular

explanatory variables have a significant effect on mean stock returns is altered by the

correction for noise, in some, but not all, specifications. For example, in specification

(5) the negative coefficient on firm size is statistically significant when estimated by

OLS, but the coefficient is overstated by 40% relative to the corresponding bias-corrected

(RW ) estimate, which is not significant (t-statistic = -1.28). Here too, it would be very

difficult to anticipate which coefficient estimates will potentially be rendered significant or

insignificant by the correction for noise-induced bias. In a nutshell, the effect of correcting

for noise in prices can be substantial, can alter statistical inference, and must be assessed

empirically.

V. Conclusion

Researchers seek to understand the determinants of variation in mean returns across

assets. Most empirical studies either compare returns across portfolios constructed by
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sorting on attributes of interest, or estimate regressions of returns on attributes or

risk factors. However, if security prices contain noise, then return premium estimates

obtained by comparison of equal-weighted mean returns across portfolios or by OLS return

regressions are biased estimates of the true return differentials. The bias is relevant,

because mean true returns, not mean observed returns, determine the rate of growth

across time in expected prices and shareholder value.

This paper has two main goals. The first is to assess, by theory and simulation,

the properties of a set of possible corrections for noisy security prices, under broader

assumptions than allowed for in previous papers, including the possibility that the noise

in prices may be serially correlated and/or contain a common component across stocks.

The second is to provide illustrative examples of the potential importance of biases in

estimated return premia, by comparing unadjusted (equal-weighted portfolio returns and

OLS return regression parameter estimates) to corresponding estimates that are adjusted

to mitigate the effects of noisy prices.

With regard to the first goal, we assess the properties of several return-weighting

methods, including equal-weighting (EW ), prior-gross-return weighting (RW ), initial-

equal-weighting (IEW ), prior-firm-value weighting (VW ), and annual-value weighting

(AVW ). We demonstrate that EW estimates are always biased in the presence of noisy

prices. When the noise in prices is autocorrelated and/or contains a common component

across stocks, the alternative methods may also be biased, but generally will be less so

than the EW estimates. For plausible parameter estimates the remaining bias in RW or

VW estimates is minimal.

Our analysis gives little reason to prefer RW over VW , or vice versa. However, the

former provides a bias-corrected estimate that places equal weight on the information

contained in each security, while the latter corrects for bias while weighting large firms

more heavily. A researcher’s choice between RW and VW methods may therefore depend

on the desired weight to be given to the information contained in small versus large
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capitalization securities.

The analysis also indicates that the RW method performs slightly better than the

IEW method, particularly when estimating cross-sectional mean returns, and that the

VW method dominates the AVW method. The former result reflects in part that the

IEW method does not correct for the effects of noisy prices in the first period after

portfolios are formed, while the latter reflects that the AVW method corrects for the

effects of noisy prices only in the first period after portfolios are formed.

With regard to the second goal, comparisons of returns across attribute-sorted decile

portfolios as well as univariate Fama-MacBeth regressions reveal statistically significant

biases in estimated return premia associated with every attribute considered, including

firm size, market-to-book ratio, trading volume, share price, and illiquidity. However, the

economic magnitude of the bias varies considerably, and is minimal in the case of the

market-to-book ratio. In contrast, the bias attributable to noisy prices in return premia

estimates associated with firm size, share price, trading volume and illiquidity can be

substantial, equal to 50% or more of the corrected estimate.

The findings reported here indicate that correcting for the effects of noise in prices

has significant effects on return premia estimates obtained from monthly return data.

For the corrections to have substantial effects, the variance of the noise in prices must

be substantial. Our findings therefore provide indirect support for the Hendershott, Li,

Menkveld, and Seasholes (2011) finding that order imbalances lead to substantial noise

in prices, and to transitory volatility in returns measured at the monthly horizon. One

possibility is that the month-end prices used to compute calendar-month returns may

contain more noise than other days of the month. Such a phenomenon could arise,

for example, from trading used to move month-end prices strategically, along the lines

documented by Carhart, Kaniel, Musto, and Reed (2002).

The empirical analysis presented here focused on monthly returns, and on five selected

firm characteristics. Significant biases may well arise in other empirical applications. Any
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explanatory variable that is cross-sectionally correlated with the variance of the noise in

prices is likely to be susceptible to bias in estimates of associated return premia. Also, the

biases attributable to noisy prices will likely be more important in studies that consider

returns measured over horizons shorter than the one-month interval considered here. We

leave the assessment of biases obtained with alternative explanatory variables and shorter

return horizons to future research.

Our analyses allow for non-zero correlation between the variance of noise and firm

attributes and for possible dependence in noise realizations across time and securities.

However, like Brennan and Wang (2010) we rely on the simplifying assumption that

individual noise realizations in period t are independent of the random components of true

returns in the same period. This assumption could be violated in some circumstances,

e.g., if investors systematically over or under-react to contemporaneous firm-specific

information arrivals. Assessing the effects of relaxing these assumptions on estimates of

parameters of the noise distribution and on the effectiveness of the corrections considered

here comprises a potentially interesting direction for future research.
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Appendix A: Time-Series Implementation

We first assess the effect of estimation by the various weighting methods in the simplest

scenario, namely, when estimating the mean and the regression coefficients for a single

firm in a time-series setting. For this analysis, we drop the subscript n from the return

equation to get Rt = 1 + α + Xtβ + εt = X̃tβ̃ + εt. Also, with some abuse of notation,

let µ denote the time-series mean of Rt. The observed returns are R0
t = Rt

1+δt
1+δt−1

= RtDt,

where δt = σδ0t and δ0t = ρδ0t−1 +
√

1− ρ2ξt, with ξt being a zero-mean unit-variance i.i.d.

random variable. Also, E(ξ3t ) = 0. We use Dt,s to denote 1+δt
1+δt−s

.

The following Lemma will be used to prove the propositions concerning the time-series

properties of the proposed estimators.

LEMMA A1:

1. E(δt|X) = 0,

2. E(Dt|X) ≈ 1 + σ2(1− ρ),

3. E(Dt,s|X) ≈ 1 + σ2 − σ2ρs.

Proof : See the Internet Appendix.

Mean Estimates

PROPOSITION A1:

• plimT→∞ µEW ≈ µ (1 + σ2(1− ρ)),

• plimT→∞ µRW ≈ E(Rt−1Rt)
E(Rt−1)

(1 + σ2(1− ρ)ρ),

• plimT→∞ µRW (s) ≈ E(Rt−1,sRt)

E(Rt−1,s)
(1 + σ2(1− ρ)ρs),

• plimT→∞ µVW = E(PtS)
E(Pt−1S)

= E(Pt)
E(Pt−1)

.

Proof : Immediate consequence from Lemma A1.
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When estimating the means, the comparison between methods depends on the time-series

properties of the prices (and therefore returns). If returns are independent in time, which

would be the case if prices follow a martingale process, then both RW and RW (s) provide

estimates closer to the true mean returns than OLS does, with RW (s)’s bias in the limit

being smaller than that of RW . The VW estimator is consistent under the restriction of

prices following martingale (see footnote 6 as well). Generally, the VW bias would depend

on Cov(Rt, Pt−1). The comparison between the magnitudes of the VW and the RW (s)

biases in the general case would depend on the time-series properties of the returns.

Regression Estimates

PROPOSITION A2:

• plimT→∞β̃EW ≈ β̃ + σ2(1− ρ)β̃,

• plimT→∞β̃RW ≈ β̃ + σ2(1− ρ)ρβ̃,

• plimT→∞β̃RW(s) ≈ β̃ + σ2(1− ρ)ρsβ̃,

• plimT→∞β̃VW = β̃.

Proof : Immediate consequence from Lemma A1.

The VW weighting scheme provides consistent parameter estimates. Also, it is easy to see

that the magnitude of the bias (in the limit) is the largest with OLS estimation, followed

by the lagged return weighting method (RW ), and then by the s-period lagged return

scheme (RW (s)).

Appendix B: Cross-sectional Implementation

Using the notation and definitions introduced in subsection B of section II, in addition

to introducing Dnt,s to denote 1+δnt
1+δnt−s

, we can write the expressions for the probability

limit of each (time t) cross-sectional estimator as follows.
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A. Ordinary Least Squares, EW : wnt = 1
N

• plimN→∞ µEW,t = E(R0
nt) = E(RntDnt) = E(RntE(Dnt|X, n)), and

• plimN→∞β̃EW,t =

=
[
E
(
X̃′ntX̃nt

)]−1
E
(
X̃′ntRntDnt

)
=
[
E
(
X̃′ntX̃nt

)]−1
E
(
X̃′ntX̃ntE(Dnt|X, n)

)
β̃.

B. Weighting by the prior period’s (gross) return, RW : wnt = R0
nt−1

• plimN→∞ µRW,t = E(Rnt−1RntDntDnt−1)
E(Rnt−1Dnt−1)

= E(Rnt−1RntE(DntDnt−1|X,n))
E(X̃nt−1β̃E(Dnt−1|X,n))

.

• plimN→∞β̃RW,t =
[
E
(
X̃′ntX̃ntR

0
nt−1

)]−1
E
(
X̃′ntR

0
nt−1R

0
nt

)
=

=
[
E
(
X̃′ntX̃ntRnt−1E(Dnt−1|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1E(Dnt−1Dnt|X, n)

)
β̃.

C. Weighting by the prior s periods’ cumulative (gross) return, RW (s):

wnt = R0
nt−1,s = R0

t−1R
0
t−2...R

0
t−1−s.

As Dnt,s = 1+δnt
1+δnt−s

(thus, Dnt,1 = Dnt), then R0
nt−1,s = Rnt−1,sDnt−1,s and

• plimN→∞ µRW (s),t = E(Rnt−1,sRntDntDnt−1,s)

E(Rnt−1,sDnt−1,s)
= E(Rnt−1,sRntE(Dnt,s+1|X,n))

E(Rnt−1,sE(Dnt−1,s|X,n)) .

• plimN→∞β̃RW(s),t =
[
E(X̃′ntX̃ntRnt−1,sDnt−1,s)

]−1
E(X̃′ntRnt−1,sRntDnt−1,sDnt) =

=
[
E
(
X̃′ntX̃ntRnt−1,sE(Dnt−1,s|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1,sE(Dnt,s+1|X, n)

)
β̃.

D. Weighting by the prior period’s firm value, VW : wnt = SnP
0
nt−1

• plimN→∞ µVW,t = E(Pnt−1Rnt(1+δnt)Sn)
E(Pnt−1(1+δnt−1)Sn)

= E(PntE(Sn(1+δnt)|X,n))
E(Pnt−1E(Sn(1+δnt−1)|X,n)) .

• plimN→∞β̃VW,t =

=
[
E
(
X̃′ntX̃ntPnt−1(1 + δnt−1)Sn

)]−1
E
(
X̃′ntPnt−1(1 + δnt−1)SnRntDnt

)
=

=
[
E
(
X̃′ntX̃ntPnt−1E(1 + δnt−1|X, n)Sn

)]−1
E
(
X̃′ntX̃ntPnt−1E(1 + δnt|X, n)Sn

)
β̃.

When c = 0 the following expressions, organized in a Lemma (with a proof provided in

the Internet Appendix), can be easily derived (using second-order Taylor approximations):
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LEMMA B1:

1. E(δnt|X, n) = 0,

2. E (Dnt|X, n) ≈ 1 + σ2
n(1− ρ),

3. E(DntDnt−1|X, n) ≈ 1 + σ2
n(1− ρ2),

4. E(Dnt,s|X, n) ≈ 1 + σ2
n − σ2

nρ
s.

Proof : See the Internet Appendix.

Proof of Proposition 1:

plimN→∞ µEW,t = E (RntE(Dnt|X, n)) ≈ E (Rnt (1 + σ2
n(1− ρ))).

plimN→∞ µRW,t = E(Rnt−1RntE(DntDnt−1|X,n))
E(Rnt−1E(Dnt−1|X,n)) ≈ E(Rnt−1Rnt(1+σ2

n(1−ρ2)))
E(Rnt−1(1+σ2

n(1−ρ)))
.

plimN→∞ µRW (s),t = E(Rnt−1,sRntE(Dnt,s+1|X,n))
E(Rnt−1,sE(Dnt−1,s|X,n)) ≈

E(Rnt−1,sRnt(1+σ2
n−σ2

nρ
s+1))

E(Rnt−1,s(1+σ2
n−σ2

nρ
s)

.

plimN→∞ µVW,t = E(PntE(Sn(1+δnt)|X,n))
E(Pnt−1E(Sn(1+δnt−1)|X,n)) = E(PntSn)

E(Pnt−1Sn)
.

Under the conditions of Proposition 1 the expressions in the propositions are a direct

consequence of the expressions developed in Lemma B1.

Proof of Proposition 2:

plimN→∞β̃EW,t =

=
[
E
(
X̃′ntX̃nt

)]−1
E
(
X̃′ntX̃ntE(Dnt|X, n)

)
β̃ ≈[

E(X̃′ntX̃nt)
]−1

E
(
X̃′ntX̃nt (1 + σ2

n(1− ρ))
)
β̃.

plimN→∞β̃RW,t =

=
[
E
(
X̃′ntX̃ntRnt−1E(Dnt−1|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1E(Dnt−1Dnt|X, n)

)
β̃ ≈[

E
(
X̃′ntX̃ntRnt−1 (1 + σ2

n(1− ρ))
)]−1

E
(
X̃′ntX̃ntRnt−1 (1 + σ2

n(1− ρ2))
)
β̃.
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plimN→∞β̃RW(s),t =

=
[
E
(
X̃′ntX̃ntRnt−1,sE(Dnt−1,s|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1,sE(Dnt,s+1|X, n)

)
β̃ ≈[

E
(
X̃′ntX̃ntRnt−1,s(1 + σ2

n − σ2
nρ

s)
)]−1

E
(
X̃′ntX̃ntRnt−1,s(1 + σ2

n − σ2
nρ

s+1)
)
β̃.

plimN→∞β̃VW,t =

=
[
E(X̃′ntX̃ntPnt−1E(1 + δnt−1|X, n)Sn)

]−1
E(X̃′ntX̃ntPnt−1E(1 + δnt|X, n)Sn)β̃ =

=
[
E(X̃′ntX̃ntPnt−1Sn)

]−1
E(X̃′ntX̃ntPnt−1Sn)β̃ = β̃.

Under the conditions of Proposition 2 the expressions in the propositions are a direct

consequence of the expressions above and those developed in Lemma B1.

The following expressions, organized in a Lemma, will be used to proof Propositions

3 and 4.

LEMMA B2:

1. Ē
(

E(1+δnt)
E(1+δnt−1)

)
= 1 + σ2c(1− ρ),

2. Ē(E(Dnt)) ≈ Ē(E(1 + δnt − δnt−1 − δntδnt−1 + δ2nt−1 + δntδ
2
nt−1)) = 1 + σ2(1− ρ),

3. Ē(E(Dnt−1Dnt)
E(Dnt−1)

) = 1 + σ2(1− ρ)(ρ− cρ+ c),

4. Ē(E(Dnt−sDnt)
E(Dnt−1)

) = 1 + σ2(1− ρ)ρs−1 + σ2c(1− 2ρs−1 + ρs).

Proof : See the Internet Appendix.

Proof of Proposition 3:

Substitute the expressions from Lemma B2 into the expressions below to get the

expressions in the proposition.

Ē(plimN→∞ µEW,t) = Ē(E(R0
nt)) = Ē(E(RntDnt)) = Ē(E(RntE(Dnt|X, n))).

Ē(plimN→∞ µRW,t) = Ē(E(Rnt−1RntDntDnt−1)
E(Rnt−1Dnt−1)

) = E(Rnt−1Rnt)
E(Rnt−1)

Ē E(DntDnt−1)
E(Dnt−1)

.

Ē(plimN→∞ µRW (s),t) = Ē(E(Rnt−1,sRntDntDnt−1,s)

E(Rnt−1,sDnt−1,s)
) = E(Rnt−1,sRnt)

E(Rnt−1,s)
Ē E(DntDnt−1,s)

E(Dnt−1,s)
.

Ē(plimN→∞ µVW , t) = Ē(E(Pnt−1Rnt(1+δnt)Sn)
E(Pnt−1(1+δnt−1)Sn)

) = E(Pnt−1RntSn)
E(Pnt−1Sn)

Ē( E(1+δnt)
E(1+δnt−1)

).
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Proof of Proposition 4:

Ē(plimN→∞β̃EW,t) =

= Ē(
[
E(X̃′ntX̃nt)

]−1
E(X̃′ntX̃ntDnt)β̃) =

[
E(X̃′ntX̃nt)

]−1
Ē(E(X̃′ntX̃ntDnt)β̃)) =[

E(X̃′ntX̃nt)
]−1

E(X̃′ntX̃ntĒ(Dnt)β̃)) =
[
E(X̃′ntX̃nt)

]−1
E(X̃′ntX̃nt(1 +σ2

n(1− ρ))β̃)).

Ē(plimN→∞β̃RW,t) =

Ē{
[
E(X̃′ntX̃nt(X̃nt−1β̃)Dnt−1)

]−1
E(X̃′ntX̃nt(X̃nt−1β̃)Dnt−1Dnt)β̃} =

=
[
E(X̃′ntX̃nt(X̃nt−1β̃))

]−1
E(X̃′ntX̃nt(X̃nt−1β̃))β̃}Ē(E(Dnt−1Dnt)

E(Dnt−1)
) = β̃Ē(E(Dnt−1Dnt)

E(Dnt−1)
).

Ē(plimN→∞β̃RW(s),t) ≈ β̃Ē(E(Dnt−1,sDnt)

E(Dnt−1,s)
).

Ē(plimN→∞β̃VW,t) ≈ β̃Ē( E(1+δnt)
E(1+δnt−1)

).
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Footnotes

1See, for example, Aı̈t-Sahalia, Mykland, Zhang (2005), Bandi and Russell (2006),

Engle and Sun (2007), and Andersen, Bollerslev, and Meddahi (2011).

2While equal-weighting is likely the most common example of a weighting method

leading to biased mean portfolio returns, other weighting methods, including fundamental

weights (based on cash flows, earnings, dividends, etc.) also give biased portfolio means,

as discussed further in Section II.

3The AVW method does reduce bias considerably as compared to equal-weighting,

but the effect is primarily attributable to placing greater weight on large-capitalization

firms that tend to have less noisy prices.

4Another possibility is the existence of mispricing that includes both permanent and

temporary components. In this case the issues we address would still apply, and the

corrections proposed would still be effective, for the effects on return premia estimates of

temporary deviations around the “true value + permanent mispricing” benchmark.

5Notably, there would be no upward bias in the average log return. However, see Ferson

and Korajczyk (1995), who articulate several reasons that it may not be appropriate to

use continuously compounded returns when testing discrete-time asset pricing models. In

any case, the large majority of empirical analyses focus on simple rather than log returns.

6In general, E(Rt) = E(Pt)
E(Pt−1)

− cov(Rt,Pt−1)
E(Pt−1)

. Setting the covariance to zero gives the

result.

7Note the distinction between this observation and the well known fact that the

arithmetic mean return exceeds the geometric mean return, unless the variance of returns

is zero. In contrast, the expected observed return exceeds the expected true return only
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if prices contain noise, i.e. temporary deviations of price from underlying value.

8Fisher and Weaver (1992) independently develop a method for correcting returns to

equal-weighted stock indices for noisy prices. Their method focuses on the ratio of two-

period to one-period index returns, but is equivalent to weighting by prior-period gross

returns.

9In particular, some elements of Xnt can be identical across n, allowing for commonality

in returns.

10In a sample where both N and T are assumed large, sequential consistency is

consistency established when first N goes to infinity and only then T does.

11Note that the sequential consistency applied here would also apply in the previous

subsection for the case of c = 0.

12Note that this implies a cross-sectional standard deviation for σn of 0.035. This is less

than the corresponding estimate reported by Brennan and Wang, which is 0.056. Clearly

the estimated distribution of sigma is right-skewed. By not accommodating this skewness

we are being conservative — accommodating the right skewness would increase the bias

in unadjusted estimates. See equation (4) in Asparouhova, Bessembinder, and Kalcheva

(2010).

13This estimate is also based on results from Brennan and Wang. They report an

(adjusted) R-squared of 0.055, implying a correlation of ±0.235, in a cross-sectional

regressions of σn on firm characteristics. While the authors use an array of explanatory

variables, for simplicity we load the correlation on firm value only. Brennan and Wang

also report that empirical estimates of ρ are negatively related to firm size. However,

the R-squared is only 0.01. We assessed the effect of accommodating a corresponding

negative correlation between ρ and firm size in the simulations, and found results to be
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wholly unaffected.

14Cross-sectional variation in expected returns is at odds with this assumption, since

such variation implies that securities with returns higher than the cross-sectional mean

in period t − 1 tend to also have high returns in period t. Conrad and Kaul (1998) also

observe that the cross-sectional covariance between current and lagged returns depends on

cross-sectional variation in mean returns, and demonstrate that a significant proportion of

observed “momentum” profits are attributable to variation in unconditional mean returns.

15Note that in a CAPM framework the cross-sectional standard deviation of expected

return is the average market return times the cross-sectonal standard deviation of beta.

Given an expected market return of 1%, a cross-sectional standard deviation of beta equal

to 1.0 would be required to induce a cross-sectional standard deviation of expected returns

as large as 1%.

16This reflects that the cross-sectional covariance Cov(Rnt, Rnt−s) grows larger with

s when there is cross-sectional variation in mean returns, and that the IEW method

weights by longer horizon returns as compared to the RW method.

17There is some evidence concerning the degree of commonality in measures of

illiquidity. Chordia, Roll, and Subrahmanyam (2000) report adjusted R-squared statistics

for cross-sectional regressions of firm-level on marketwide illiquidity measures that are

uniformly less than two percent. Similarly, Hasbrouck and Seppi (2001) report that the

first principal component explains less than eight percent of the variation in signed order

flow across stocks. While these estimates indicate that the degree of commonality in

particular contributors to noisy prices is not high, they do not comprise direct evidence

on commonality in noise.

18The book-to-market ratio is defined as the sum of fiscal year-end book equity

(Compustat item #60) and balance sheet deferred taxes (Compustat item #74), divided
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by the CRSP market capitalization in December of the corresponding year. As in Fama

and French (1992), the value of BM for July of year t to June of year t+ 1 was computed

using accounting data at the end of year t − 1, and book-to-market ratio values greater

than the 0.995 fractile or less than the 0.005 fractile were set equal to the 0.995 and 0.005

fractile values, respectively. The book value of common equity (Compustat data 60) is

not generally available prior to 1962, see Fama and French(1992), p.429.

19Given that the interpretation of trading volume potentially differs across markets,

we use in the regression-based analyses indicator variables to allow for separate slope

coefficients on trading volume (and the illiquidity measure) for NYSE/AMEX and Nasdaq-

listed stocks.

20Beta is estimated every December for all stocks with at least 24 return observations

over the prior 60 months, with the qualification that since the factor estimation begins

in July 1963, the factor loadings in the first month of the regression period (January

1966) were estimated from 30 observations. The Dimson (1979) procedure with one lag

is implemented to allow for potential thin trading.

21The lone exception is the differential between the EW mean and the IEW mean

book-to-market premium, for which the t-statistic is 1.34.

22As noted, the IEW results reported on Tables II and III of this paper are based on

portfolios formed at the end of each July.

23Ang, Liu, and Schwarz (2010) show theoretically and empirically that individual-stock

regressions have better large-sample statistical properties than portfolio-based regressions.

24Autocorrelations in monthly return premia estimates are modest. Across the seven

full sample return premium estimates on Table VI (including separate Nasdaq and NYSE

coefficients for trading volume and illiquidity), the average first-order autocorrelation in
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the OLS return premium estimates is 0.076, while the first-order autocorrelation in the

RW return premium estimates averages 0.083.

25The two exceptions are for the book-to-market ratio in the 2001–2009 period and

dollar volume for NYSE stocks during the 1966–1982 period.
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Figure 1. Simulation Results: Distance of the Estimated Slope
Coefficient on Illiquidity from the True Value of 0.15

Panel A: Estimators line plots when c = 0
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(a) IEW using t=1 to 12.
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Figure 2. Simulation Results: Distance of the Estimated Cross-sectional
Mean Return from the True Mean of 0.01

Panel A: Estimators line plots when c = 0
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Table I. Summary Statistics and Correlations

Panel A represents the time-series averages of monthly cross-sectional means for a sample that averages
3762 stocks, over 528 months from January 1966 to December 2009. Monthly returns are in excess of the
treasury interest rate. Firm size is in billions. Book-to-market ratio (BM) is winsorized at the 0.005 and
the 0.995 fractiles of the full sample by setting the outlying values to the 0.005 and the 0.995 fractiles
respectively. Share price is in dollars. Volume is in $ millions per month. Volume for Nasdaq stocks
is available after 1983. Illiq is the Amihud (2002) illiquidity measure. Panel B presents time-series of
monthly cross-sectional correlations (Illiq and Dvol are standardized as per Eq. 3 and Eq. 4 in Amihud
(2002)) between firm characteristics.

Panel A: Summary Statistics
Variable Mean Median St.dev.
Return 0.827 0.976 6.066
Firm size 1.182 0.559 1.157
BM 0.931 0.836 0.378
Share price 25.551 22.217 10.305
Volume 142.299 32.284 223.229
Illiq 7.285 5.235 6.968

Panel B: Correlation Matrix of Transformed Firm Characteristics
Variable Return Size log(BM) InvPrice Dvol
Return 1 – – – –
Size -0.010 1 – – –
log(BM) 0.029 -0.287 1 – –
InvPrice 0.004 -0.783 0.213 1 –
Dvol -0.017 0.886 -0.327 -0.691 1
Illiq 0.019 -0.323 0.148 0.353 -0.339
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Table II. Mean Returns to Attribute-Sorted Portfolios, January 1966 to
December 2009

The table reports time-series means of monthly returns to the extreme of the ten attribute-sorted portfolios and to the
corresponding hedge portfolio. Portfolio returns for month t are measured on an equal-weighted (EW), return-weighted
(RW, weight is period t-1 gross return), equal-initial-weighted (IEW, weight is cumulative gross return from portfolio
formation through month t-1, prior-month-value-weighted (VW, weight is month t-1 market capitalization), and Annual-
value-weighted (AVW, weight is previous December market capitalization) basis. Firms are assigned to portfolios based on
attributes measured in July. T-statistics are reported in parentheses.

Extreme Deciles and Hedge Portfolio Hedge Portfolio Differential
10 1 10-1 (T-stats) Estimates (T-stats)

Panel A: Size
EW 0.462 1.888 -1.425 (-4.43) RW IEW VW AVW RW IEW VW AVW
RW 0.448 1.410 -0.961 (-3.07) EW -0.463 -0.681 -0.908 -0.549 EW (-13.52) (-9.76) (-9.04) (-5.61)
IEW 0.450 1.194 -0.743 (-2.43) RW – -0.218 -0.444 -0.085 RW – (-4.07) (-5.14) (-0.92)
VW 0.371 0.888 -0.517 (-1.71) IEW – – -0.226 0.132 IEW – – (-3.37) (1.55)
AVW 0.365 1.241 -0.876 (-2.86) VW – – – 0.358 VW – – – (5.40)

Panel B: Book-to-Market
EW 1.517 0.148 1.369 (6.03) RW IEW VW AVW RW IEW VW AVW
RW 1.301 0.024 1.277 (5.69) EW 0.092 0.070 0.552 0.637 EW (2.21) (1.34) (2.32) (2.68)
IEW 1.331 0.033 1.298 (5.94) RW – -0.021 0.460 0.545 RW – (-0.42) (2.05) (2.44)
VW 1.031 0.214 0.816 (3.18) IEW – – 0.481 0.566 IEW – – (2.12) (2.49)
AVW 0.962 0.230 0.731 (2.81) VW – – – 0.084 VW – – – (1.73)

Panel C: Inverse Price
EW 1.832 0.579 1.252 (3.27) RW IEW VW AVW RW IEW VW AVW
RW 1.214 0.569 0.645 (1.74) EW 0.607 0.800 1.088 0.768 EW (15.04) (10.14) (5.94) (2.86)
IEW 1.035 0.583 0.452 (1.27) RW – 0.193 0.480 0.161 RW – (3.16) (2.72) (0.60)
VW 0.570 0.405 0.164 (0.40) IEW – – 0.287 -0.031 IEW – – (1.69) (-0.12)
AVW 0.872 0.388 0.483 (1.04) VW – – – -0.319 VW – – – (-2.03)

Panel D: Volume
EW 0.407 1.605 -1.198 (-4.52) RW IEW VW AVW RW IEW VW AVW
RW 0.396 1.243 -0.846 (-3.28) EW -0.352 -0.514 -0.839 -0.717 EW (-12.36) (-9.61) (-6.51) (-5.60)
IEW 0.414 1.098 -0.684 (-2.69) RW – -0.162 -0.487 -0.365 RW – (-3.67) (-3.98) (-2.96)
VW 0.354 0.713 -0.359 (-1.70) IEW – – -0.324 -0.203 IEW – – (-2.80) (-1.71)
AVW 0.344 0.825 -0.481 (-2.28) VW – – – 0.121 VW – – – (4.09)

Panel E: Illiquidity Ratio
EW 1.580 0.441 1.139 (3.95) RW IEW VW AVW RW IEW VW AVW
RW 1.211 0.430 0.780 (2.77) EW 0.358 0.464 0.726 0.665 EW (12.77) (8.33) (5.10) (5.70)
IEW 1.108 0.433 0.675 (2.38) RW – 0.105 0.367 0.306 RW – (2.42) (2.77) (2.78)
VW 0.769 0.356 0.413 (1.42) IEW – – 0.262 0.200 IEW – – (2.26) (1.99)
AVW 0.826 0.351 0.474 (1.74) VW – – – -0.061 VW – – – (-0.98)
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Table III. Mean Returns to Attribute-Sorted Portfolio, January 1966 to
December 2009, with Price Filter

The table replicates Table II, except that stocks with price per share less than $5 as of the end of previous month are
excluded. The table reports time-series means of monthly returns to the extreme of the ten attribute-sorted portfolios
and to the corresponding hedge portfolio. Portfolio returns for month t are measured on an equal-weighted (EW), return-
weighted (RW, weight is period t-1 gross return), equal-initial-weighted (IEW, weight is cumulative gross return from
portfolio formation through month t-1, prior-month-value-weighted (VW, weight is month t-1 market capitalization), and
Annual-value-weighted (AVW, weight is previous December market capitalization) basis. Firms are assigned to portfolios
based on attributes measured in July. T-statistics are reported in parentheses. An ∗ denotes that the estimate in the table
differs significantly (p-value < 0.05) from the corresponding estimate reported in Table II.

Extreme Deciles and Hedge Portfolio Hedge Portfolio Differential
10 1 10-1 (T-stats) Estimates (T-stats)

Panel A: Size
EW 0.437 0.792∗ -0.355∗ (-1.97) RW IEW VW AVW RW IEW VW AVW
RW 0.424 0.716∗ -0.291∗ (-1.62) EW -0.064∗ -0.017∗ 0.022∗ -0.006∗ EW (-6.31) (-0.65) (0.40) (-0.12)
IEW 0.428 0.766∗ -0.338∗ (-1.91) RW – 0.046∗ 0.086∗ 0.057 RW – (1.92) (1.57) (1.05)
VW 0.362 0.740 -0.378 (-2.02) IEW – – 0.040∗ 0.010 IEW – – (0.83) (0.21)
AVW 0.352 0.701∗ -0.349∗ (-1.86) VW – – – -0.029∗ VW – – – (-1.24)

Panel B: Book-to-Market
EW 0.892∗ 0.090 0.802∗ (4.02) RW IEW VW DVW RW IEW VW AVW
RW 0.842∗ 0.042 0.800∗ (3.99) EW 0.002∗ 0.028 0.182∗ 0.224∗ EW (0.14) (0.79) (0.98) (1.20)
IEW 0.883∗ 0.109 0.773∗ (3.83) RW – 0.026 0.180∗ 0.222∗ RW – (0.89) (0.95) (1.17)
VW 0.830 0.211 0.619 (2.65) IEW – – 0.154∗ 0.196∗ IEW – – (0.80) (1.01)
DVW 0.811 0.234 0.577 (2.48) VW – – – 0.042 VW – – – (1.33)

Panel C: Inverse Price
EW 0.480∗ 0.565 -0.084∗ (-0.45) RW IEW VW AVW RW IEW VW AVW
RW 0.410∗ 0.557 -0.147∗ (-0.79) EW 0.062∗ 0.015∗ 0.097∗ 0.084∗ EW (5.45) (0.48) (0.71) (0.57)
IEW 0.469∗ 0.569 -0.100∗ (-0.54) RW – -0.046∗ 0.035∗ 0.022 RW – (-1.54) (0.26) (0.15)
VW 0.219 0.401 -0.182 (-0.75) IEW – – 0.081 0.068 IEW – – (0.61) (0.47)
AVW 0.215 0.385 -0.169 (-0.68) VW – – – -0.012∗ VW – – – (-0.33)

Panel D: Volume
EW 0.361∗ 0.800∗ -0.439∗ (-2.40) RW IEW VW AVW RW IEW VW AVW
RW 0.360 0.740∗ -0.380∗ (-2.09) EW -0.059∗ -0.054∗ -0.150∗ -0.128∗ EW (-5.03) (-1.65) (-1.56) (-1.32)
IEW 0.384 0.770 -0.385 (-2.17) RW – 0.005∗ -0.091∗ -0.068∗ RW – (0.17) (-0.96) (-0.72)
VW 0.342 0.631 -0.288 (-1.78) IEW – – -0.096∗ -0.073 IEW – – (-1.03) (-0.77)
AVW 0.325∗ 0.637 -0.311 (-1.91) VW – – – 0.022∗ VW – – – (1.23)

Panel E: Illiquidity Ratio
EW 0.892∗ 0.407 0.484∗ (2.81) RW IEW VW AVW RW IEW VW AVW
RW 0.828∗ 0.399 0.429∗ (2.50) EW 0.054∗ 0.001∗ 0.067∗ 0.079∗ EW (4.97) (0.04) (0.76) (0.91)
IEW 0.883 0.399 0.483 (2.88) RW – -0.053∗ 0.012∗ 0.024∗ RW – (-2.34) (0.14) (0.28)
VW 0.764 0.347 0.417 (2.47) IEW – – 0.066∗ 0.078 IEW – – (0.81) (0.94)
AVW 0.743 0.338 0.405 (2.38) VW – – – 0.011 VW – – – (0.50)
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Table IV. Alphas to Attribute-Sorted Portfolios, January 1966 to December
2009

The table reports alphas for the extreme attribute-sorted portfolios and the corresponding hedge portfolio, estimated as
intercepts in time-series regressions of monthly portfolio returns on a four-factor asset pricing model. We also report alphas
obtained when the dependent variable is the difference in differences: RW(10-1) less VW(10-1), RW(10-1) less VW(10-1)
and EW(10-1) less VW(10-1). Portfolio returns for month t are measured on an equal-weighted (EW), return-weighted
(RW, weight is period t-1 gross return), and prior-month-value-weighted (VW, weight is month t-1 market capitalization)
basis. Firms are assigned to portfolios based on attributes measured in July. P(GRS) is the p-value of the F-statistic of
Gibbons, Ross, and Shanken (1989), and pertains to the hypothesis that intercepts for all ten attribute sorted portfolios
are simultaneously equal to zero. T-statistics are reported in parentheses.

Extreme Deciles and Hedge Portfolio Hedge Portfolio Differential
10 1 10-1 (T-stats) p(GRS) Estimates (T-stats)

Panel A: Size
EW 0.102 1.228 -1.126 (-4.33) 0.00 RW VW RW VW
RW 0.084 0.737 -0.653 (-2.66) 0.00 EW -0.473 -1.011 EW (-10.46) (-9.40)
VW 0.040 0.156 -0.115 (-0.57) 0.22 RW – -0.538 RW – (-6.05)

Panel B: Book-to-Market
EW 0.787 0.015 0.772 (3.84) 0.00 RW VW RW VW
RW 0.553 -0.115 0.669 (3.58) 0.00 EW 0.102 0.793 EW (1.98) (3.05)
VW 0.146 0.168 -0.021 (-0.13) 0.85 RW – 0.690 RW – (2.80)

Panel C: Inverse Price
EW 1.201 0.169 1.031 (2.98) 0.00 RW VW RW VW
RW 0.559 0.156 0.402 (1.25) 0.00 EW 0.628 1.234 EW (11.10) (5.27)
VW -0.121 0.081 -0.203 (-0.56) 0.15 RW – 0.606 RW – (2.74)

Panel D: Volume
EW 0.058 0.955 -0.896 (-4.22) 0.00 RW VW RW VW
RW 0.042 0.586 -0.543 (-2.64) 0.01 EW -0.352 -0.850 EW (-9.67) (-6.21)
VW 0.030 0.076 -0.046 (-0.34) 0.48 RW – -0.497 RW – (-3.72)

Panel E: Illiquidity Ratio
EW 0.805 0.112 0.692 (3.21) 0.00 RW VW RW VW
RW 0.429 0.097 0.331 (1.60) 0.02 EW 0.361 0.898 EW (10.27) (7.28)
VW -0.166 0.039 -0.205 (-1.11) 0.32 RW – 0.537 RW – (4.59)
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Table V. January vs. Non-January Returns, January 1966 to December 2009

The table reports time-series means of monthly returns to the extreme of the ten attribute-sorted portfolios and to the corresponding hedge
portfolio for January month and separate for non-January month. Portfolio returns for month t are measured on an equal-weighted (EW),
return-weighted (RW, weight is period t-1 gross return), and prior-month-value-weighted (VW, weight is month t-1 market capitalization) basis.
Firms are assigned to portfolios based on attributes measured in July. T-statistics are reported in parentheses.

Extreme Deciles and the Hedge Portfolio Hedge Portfolio Differentials
EW10 EW1 EW10−1 RW10 RW1 RW10−1 VW10 VW1 VW10−1 EW -RW RW -VW EW -VW

Panel A: Size
January 0.708 13.764 -13.055 0.646 12.34 -11.693 0.520 10.237 -9.717 -1.361 -1.976 -3.338
(t-stats) (0.86) (7.92) (-8.77) (0.79) (7.57) (-8.38) (0.65) (6.89) (-7.67) (-7.32) (-4.60) (-6.07)
Non-January 0.440 0.819 -0.379 0.430 0.427 0.003 0.357 0.047 0.310 -0.383 -0.306 -0.689
(t-stats) (2.00) (2.41) (-1.37) (1.97) (1.26) (0.01) (1.76) (0.14) (1.11) (-12.39) (-3.68) (-7.54)

Panel B: Book-to-Market
January 9.345 3.784 5.560 8.615 3.525 5.090 4.227 0.557 3.670 0.469 1.420 1.890
(t-stats) (6.06) (2.97) (4.86) (5.67) (2.96) (4.30) (5.67) (0.53) (2.55) (1.47) (1.73) (1.83)
Non-January 0.804 -0.182 0.987 0.634 -0.294 0.929 0.740 0.183 0.556 0.057 0.372 0.430
(t-stats) (2.61) (-0.55) (4.56) (2.06) (-0.90) (4.36) (2.44) (0.66) (2.27) (1.66) (1.60) (1.78)

Panel C: Inverse Price
January 16.265 0.555 15.710 14.689 0.495 14.194 12.858 0.457 12.401 1.516 1.792 3.309
(t-stats) (7.66) (0.67) (8.46) (7.50) (0.60) (8.27) (6.78) (0.56) (7.36) (5.77) (2.69) (4.28)
Non-January 0.534 0.581 -0.047 0.003 0.576 -0.573 -0.535 0.400 -0.935 0.525 0.362 0.888
(t-stats) (1.32) (2.58) (-0.15) (0.007) (2.57) (-1.80) (-1.19) (1.96) (-2.44) (15.06) (1.99) (4.81)

Panel D: Volume
January 0.987 11.295 -10.308 0.904 10.184 -9.279 0.542 5.964 -5.421 -1.028 -3.857 -4.886
(t-stats) (1.05) (7.07) (-7.79) (0.98) (6.70) (-7.37) (0.66) (4.60) (-5.09) (-7.88) (-7.47) (-8.79)
Non-January 0.355 0.734 -0.379 0.351 0.439 -0.088 0.337 0.241 0.095 -0.291 -0.183 -0.475
(t-stats) (1.38) (2.64) (-1.66) (1.38) (1.58) (-0.39) (1.61) (1.08) (0.49) (-10.75) (-1.60) (-4.03)

Panel E: Illiquidity Ratio
January 11.855 1.104 10.750 10.717 1.042 9.675 8.006 0.563 7.442 1.075 2.232 3.307
(t-stats) (6.91) (1.23) (7.84) (6.59) (1.18) (7.43) (5.28) (0.70) (5.78) (7.18) (5.36) (6.75)
Non-January 0.656 0.381 0.275 0.356 0.375 -0.018 0.119 0.338 -0.219 0.294 0.200 0.494
(t-stats) (2.09) (1.60) (1.08) (1.13) (1.59) (-0.07) (0.36) (1.65) (-0.79) (11.53) (1.46) (3.43)
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Table VI. Univariate Fama-MacBeth Regressions, January 1966 to December
2009

Reported are results of implementing cross-sectional Fama-MacBeth regressions of monthly stock returns, relying
on NYSE-Amex stocks from 1966 to 2009 and including Nasdaq stocks from 1983 to 2009. Panels A through E
report results for the different firm-specific characteristics. The coefficients reported in Column OLS are the time-
series means of the monthly cross-sectional OLS regression estimates, while coefficients reported in Column RW are
the time-series means of the monthly cross-sectional WLS regression estimates, where the weighting variable is one
plus previous month return. The coefficients reported in Column DIF are the time-series means of the difference
between the OLS and WLS coefficient. T -statistics are reported in parentheses and adjusted for autocorrelation as
in footnote 13 in Cooper, Gulen, and Schill (2008).

Period OLS (T -stat.) RW (T -stat.) DIF (T -stat.)
Panel A Size 1966–2009 -0.186 (-3.80) -0.125 (-2.61) -0.060 (-11.50)

1966–1982 -0.243 (-2.75) -0.203 (-2.33) -0.040 (-7.55)
1983–2000 -0.105 (-1.39) -0.024 (-0.32) -0.081 (-8.73)
2001–2009 -0.238 (-2.53) -0.180 (-2.03) -0.057 (-4.20)

Beta 1966–2009 0.015 (0.12) -0.040 (-0.34) 0.055 (7.26)
1966–1982 -0.076 (-0.40) -0.112 (-0.60) 0.036 (5.05)
1983–2000 -0.067 (-0.38) -0.136 (-0.80) 0.068 (4.86)
2001–2009 0.355 (1.01) 0.287 (0.84) 0.067 (2.92)

Panel B log(BM) 1966–2009 0.463 (5.58) 0.446 (5.41) 0.017 (2.30)
1966–1982 0.499 (3.24) 0.453 (3.01) 0.045 (5.15)
1983–2000 0.413 (5.00) 0.412 (4.88) 0.001 (0.086)
2001–2009 0.500 (2.01) 0.504 (2.00) -0.003 (-0.14)

Beta 1966–2009 0.132 (0.94) 0.051 (0.39) 0.081 (3.86)
1966–1982 0.120 (0.53) 0.045 (0.20) 0.074 (6.69)
1983–2000 -0.055(-0.33) -0.116 (-0.71) 0.061 (5.43)
2001–2009 0.558 (1.18) 0.420 (1.10) 0.137 (1.30)

Panel C InvPrice 1966–2009 0.312 (2.84) 0.160 (1.49) 0.152 (13.33)
1966–1982 0.385 (1.87) 0.273 (1.35) 0.112 (9.21)
1983–2000 0.141 (0.88) -0.053 (-0.33) 0.194 (10.68)
2001–2009 0.516 (2.21) 0.373 (1.75) 0.143 (4.16)

Beta 1966–2009 -0.007 (-0.06) -0.037 (-0.33) 0.029 (4.47)
1966–1982 -0.038 (-0.20) -0.060 (-0.32) 0.022 (3.82)
1983–2000 -0.058 (-0.36) -0.101 (-0.64) 0.0427 (3.21)
2001–2009 0.152 (0.52) 0.134 (0.46) 0.018 (1.08)

Panel D NYdvol 1966–2009 -0.093 (-1.89) -0.057 (-1.14) -0.035 (-5.36)
1966–1982 -0.022 (-0.55) -0.024 (-0.64) 0.002 (0.56)
1983–2000 -0.071 (-0.73) -0.025 (-0.25) -0.045 (-4.50)
2001–2009 -0.269 (-1.89) -0.181 (-1.30) -0.088 (-4.08)

NAdvol 1983–2009 -0.241 (-2.90) -0.151 (-1.87) -0.089 (-7.34)
1983–2000 -0.132 (-1.79) -0.054 (-0.76) -0.078 (-6.59)
2001–2009 -0.460 (-2.17) -0.347 (-1.69) -0.113 (-3.94)

Beta 1966–2009 0.104 (0.81) 0.024 (0.19) 0.080 (9.04)
1966–1982 0.038 (0.17) -0.021 (-0.09) 0.059 (6.72)
1983–2000 -0.017 (-0.10) -0.112 (-0.67) 0.094 (6.45)
2001–2009 0.474 (1.31) 0.384 (1.09) 0.090 (3.09)

Panel E NYilliq 1966–2009 0.116 (4.02) 0.070 (2.74) 0.045 (6.38)
1966–1982 0.110 (2.35) 0.078 (1.77) 0.031 (6.43)
1983–2000 0.153 (2.86) 0.083 (1.81) 0.069 (4.32)
2001–2009 0.055 (1.89) 0.030 (1.15) 0.024 (2.96)

NAilliq 1983–2009 0.062 (4.38) 0.045 (3.20) 0.017 (6.77)
1983–2000 0.060 (2.96) 0.042 (2.11) 0.017 (5.48)
2001–2009 0.065 (2.92) 0.050 (2.38) 0.015 (4.22)

Beta 1966–2009 0.071 (0.54) 0.001 (0.01) 0.070 (8.56)
1966–1982 0.039 (0.18) -0.019 (-0.09) 0.059 (6.22)
1983–2000 -0.080 (-0.44) -0.151 (-0.85) 0.071 (5.56)
2001–2009 0.436 (1.19) 0.347 (0.98) 0.088 (3.21)
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Table VII. Multivariate Fama-MacBeth Regressions, January 1966 to
December 2009

Reported are results of implementing cross-sectional Fama-MacBeth regressions of monthly stock returns
on NYSE-Amex stocks from 1964 to 2009, and also including Nasdaq stocks from 1983 to 2009. The
coefficients reported in Column OLS, Column RW and Column DIF are as explained in the previous
tables. T -statistics are reported in parentheses and adjusted for autocorrelation as in footnote 13 in
Cooper, Gulen, and Schill (2008).

OLS RW DIF OLS RW DIF OLS RW DIF
(T -stat.) (T -stat.) (T -stat.) (T -stat.) (T -stat.) (T -stat.) (T -stat.) (T -stat.) (T -stat.)

(1) (2) (3)
Beta 0.059 0.006 0.052 0.038 0.007 0.030 0.082 0.019 0.063

(0.48) (0.05) (2.82) (0.35) (0.07) (2.59) (0.76) (0.20) (3.91)
Size -0.156 -0.097 -0.058 -0.060 -0.079 0.018 -0.177 -0.115 -0.062

(-3.09) (-1.96) (-10.44) (-1.70) (-2.25) (4.29) (-1.90) (-1.23) (-4.35)
log(BM) 0.310 0.340 -0.030 0.311 0.341 -0.029 0.285 0.325 -0.040

(3.93) (4.21) (-3.47) (4.20) (4.45) (-3.00) (4.10) (4.49) (-4.32)
InvPrice – – – 0.178 0.005 0.173 – – –

(1.54) (0.05) (8.96)
Nydvol – – – – – – 0.131 0.098 0.033

(1.18) (0.85) (1.53)
Nadvol – – – – – – 0.059 0.063 -0.004

(0.30) (0.31) (-0.14)
Nyilliq – – – – – – – – –

Nailliq – – – – – – – – –

(4) (5) (6)
Beta 0.057 0.022 0.034 0.065 0.013 0.052 0.057 0.023 0.033

(0.63) (0.26) (4.38) (0.54) (0.12) (2.99) (0.64) (0.27) (4.55)
Size -0.092 -0.102 0.009 -0.106 -0.057 -0.048 -0.110 -0.117 0.006

(-1.37) (-1.48) (0.88) (-2.34) (-1.28) (-9.26) (-1.66) (-1.72) (0.61)
log(BM) 0.288 0.325 -0.036 0.300 0.334 -0.034 0.283 0.321 -0.037

(4.50) (4.81) (-3.40) (3.82) (4.14) (-3.82) (4.42) (4.74) (-3.45)
InvPrice 0.145 -0.022 0.168 – – – 0.054 -0.095 0.150

(1.19) (-0.19) (8.49) (0.46) (-0.86) (7.94)
Nydvol 0.109 0.078 0.030 – – – 0.130 0.103 0.027

(0.89) (0.63) (1.11) (1.08) (0.86) (0.98)
Nadvol 0.071 0.057 0.014 – – – 0.125 0.113 0.011

(0.32) (0.25) (0.355) (0.56) (0.51) (0.26)
Nyilliq – – – -0.013 -0.023 0.009 -0.025 -0.027 0.002

(-0.15) (-0.27) (1.10) (-0.24) (-0.27) (0.25)
Nailliq – – – 0.089 0.082 0.006 0.088 0.087 0.001

(3.15) (2.90) (1.46) (3.32) (3.24) (0.19)
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Internet Appendix for “Noisy Prices and Inference Regarding Returns”*

Supplement to Appendix B: Cross-sectional Implementation

Using the notation and definitions introduced in subsection B of Section II, in addition

to introducing Dnt,s to denote 1+δnt
1+δnt−s

, we can write the expressions for the probability

limit of each (time t) cross-sectional estimator as follows.

A. Ordinary Least Squares, EW : wnt = 1
N

• plimN→∞ µEW,t = E(R0
nt) = E(RntDnt) = E(RntE(Dnt|X, n)), and

• plimN→∞β̃EW,t =
[
E
(
X̃′ntX̃nt

)]−1
E
(
X̃′ntRntDnt

)
=[

E
(
X̃′ntX̃nt

)]−1
E
(
X̃′ntX̃ntE(Dnt|X, n)

)
β̃.

B. Weighting by the prior period’s (gross) return, RW : wnt = R0
nt−1

• plimN→∞ µRW,t = E(Rnt−1RntDntDnt−1)
E(Rnt−1Dnt−1)

= E(Rnt−1RntE(DntDnt−1|X,n))
E(X̃nt−1β̃E(Dnt−1|X,n))

.

• plimN→∞β̃RW,t =
[
E
(
X̃′ntX̃ntR

0
nt−1

)]−1
E
(
X̃′ntR

0
nt−1R

0
nt

)
=

=
[
E
(
X̃′ntX̃ntRnt−1E(Dnt−1|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1E(Dnt−1Dnt|X, n)

)
β̃.

C. Weighting by the prior s periods’ cumulative (gross) return, RW (s):

wnt = R0
nt−1,s = R0

t−1R
0
t−2...R

0
t−1−s.

As Dnt,s = 1+δnt
1+δnt−s

(thus, Dnt,1 = Dnt), then R0
nt−1,s = Rnt−1,sDnt−1,s and

• plimN→∞ µRW (s),t = E(Rnt−1,sRntDntDnt−1,s)

E(Rnt−1,sDnt−1,s)
= E(Rnt−1,sRntE(Dnt,s+1|X,n))

E(Rnt−1,sE(Dnt−1,s|X,n)) .

• plimN→∞β̃RW(s),t =
[
E(X̃′ntX̃ntRnt−1,sDnt−1,s)

]−1
E(X̃′ntRnt−1,sRntDnt−1,sDnt) =

=
[
E
(
X̃′ntX̃ntRnt−1,sE(Dnt−1,s|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1,sE(Dnt,s+1|X, n)

)
β̃.

∗Citation format: Elena Asparouhova, Hendrik Bessembinder, and Ivalina Kalcheva, 2011, Internet
Appendix to “Noisy Prices and Inference Regarding Returns,” Journal of Finance [vol #], [pages]. Please
note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information
supplied by the authors. Any queries (other than missing material) should be directed to the authors of
the article.
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D. Weighting by the prior period’s firm value, VW : wnt = SnP
0
nt−1

• plimN→∞ µVW,t = E(Pnt−1Rnt(1+δnt)Sn)
E(Pnt−1(1+δnt−1)Sn)

= E(PntE(Sn(1+δnt)|X,n))
E(Pnt−1E(Sn(1+δnt−1)|X,n)) .

• plimN→∞β̃VW,t =

=
[
E
(
X̃′ntX̃ntPnt−1(1 + δnt−1)Sn

)]−1
E
(
X̃′ntPnt−1(1 + δnt−1)SnRntDnt

)
=

=
[
E
(
X̃′ntX̃ntPnt−1E(1 + δnt−1|X, n)Sn

)]−1
E
(
X̃′ntX̃ntPnt−1E(1 + δnt|X, n)Sn

)
β̃.

When c = 0 the following expressions, organized in a lemma, can be easily derived

(using second-order Taylor approximations):

LEMMA B1:

1. E(δnt|X, n) = 0.

2. E (Dnt|X, n) ≈ 1 + σ2
n(1− ρ),

3. E(DntDnt−1|X, n) ≈ 1 + σ2
n(1− ρ2),

4. E(Dnt,s|X, n) ≈ 1 + σ2
n − σ2

nρ
s.

Proof :

1. Follows directly from the distributional assumptions for δnt.

2. E (Dnt|X, n) ≈ E
(
(1 + δnt)(1− δnt−1 + δ2nt−1)|X, n

)
=

= E
(
1 + δ2nt−1 − δntδnt−1|X, n

)
= 1 + σ2

n(1− ρ).

3. E(DntDnt−1|X, n) ≈ E
(
(1 + δnt)(1− δnt−2 + δ2nt−2)|X, n

)
=

= E
(
1 + δ2nt−2 − δntδnt−2|X, n

)
= 1 + σ2

n(1− ρ2).

4. E(Dnt,s|X, n) ≈ E
(
(1 + δnt)(1− δnt−s + δ2nt−s)|X, n

)
=

E
(
1 + δ2nt−s − δntδnt−s|X, n

)
= 1 + σ2

n − σ2
nρ

s.

Proof of Proposition 1:

plimN→∞ µEW,t = E (RntE(Dnt|X, n)) ≈ E (Rnt (1 + σ2
n(1− ρ))).
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plimN→∞ µRW,t = E(Rnt−1RntE(DntDnt−1|X,n))
E(Rnt−1E(Dnt−1|X,n)) ≈ E(Rnt−1Rnt(1+σ2

n(1−ρ2)))
E(Rnt−1(1+σ2

n(1−ρ)))
.

plimN→∞ µRW (s),t = E(Rnt−1,sRntE(Dnt,s+1|X,n))
E(Rnt−1,sE(Dnt−1,s|X,n)) ≈

E(Rnt−1,sRnt(1+σ2
n−σ2

nρ
s+1))

E(Rnt−1,s(1+σ2
n−σ2

nρ
s)

.

plimN→∞ µVW,t = E(PntE(Sn(1+δnt)|X,n))
E(Pnt−1E(Sn(1+δnt−1)|X,n)) = E(PntSn)

E(Pnt−1Sn)
.

Under the conditions of Proposition 1 the expressions in the propositions are a direct

consequence of the expressions developed in Lemma B1.

Proof of Proposition 2:

plimN→∞β̃EW,t =
[
E
(
X̃′ntX̃nt

)]−1
E
(
X̃′ntX̃ntE(Dnt|X, n)

)
β̃ ≈[

E(X̃′ntX̃nt)
]−1

E
(
X̃′ntX̃nt (1 + σ2

n(1− ρ))
)
β̃.

plimN→∞β̃RW,t =

=
[
E
(
X̃′ntX̃ntRnt−1E(Dnt−1|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1E(Dnt−1Dnt|X, n)

)
β̃ ≈[

E
(
X̃′ntX̃ntRnt−1 (1 + σ2

n(1− ρ))
)]−1

E
(
X̃′ntX̃ntRnt−1 (1 + σ2

n(1− ρ2))
)
β̃.

plimN→∞β̃RW(s),t =

=
[
E
(
X̃′ntX̃ntRnt−1,sE(Dnt−1,s|X, n)

)]−1
E
(
X̃′ntX̃ntRnt−1,sE(Dnt,s+1|X, n)

)
β̃ ≈[

E
(
X̃′ntX̃ntRnt−1,s(1 + σ2

n − σ2
nρ

s)
)]−1

E
(
X̃′ntX̃ntRnt−1,s(1 + σ2

n − σ2
nρ

s+1)
)
β̃.

plimN→∞β̃VW,t =

=
[
E(X̃′ntX̃ntPnt−1E(1 + δnt−1|X, n)Sn)

]−1
E(X̃′ntX̃ntPnt−1E(1 + δnt|X, n)Sn)β̃ =

=
[
E(X̃′ntX̃ntPnt−1Sn)

]−1
E(X̃′ntX̃ntPnt−1Sn)β̃ = β̃.

Under the conditions of Proposition 2 the expressions in the propositions are a direct

consequence of the expressions above and those developed in Lemma B1.

The following expressions, organized in a Lemma, will be used to proof Propositions

3 and 4.
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LEMMA B2:

1. Ē
(

E(1+δnt)
E(1+δnt−1)

)
= 1 + σ2c(1− ρ),

2. Ē(E(Dnt)) ≈ Ē(E(1 + δnt − δnt−1 − δntδnt−1 + δ2nt−1 + δntδ
2
nt−1)) = 1 + σ2(1− ρ),

3. Ē(E(Dnt−1Dnt)
E(Dnt−1)

) = 1 + σ2(1− ρ)(ρ− cρ+ c),

4. Ē(E(Dnt−sDnt)
E(Dnt−1)

) = 1 + σ2(1− ρ)ρs−1 + σ2c(1− 2ρs−1 + ρs).

Proof :

1. This follows directly from the distributional assumptions on δnt.

2. Ē(E(Dnt)) ≈ Ē(E(1+δnt−δnt−1−δntδnt−1+δ2nt−1+δntδ
2
nt−1)) = 1+Ē(σ2

n(−δ0ntδ0nt−1+

(δ0nt−1)
2

+ δ0nt(δ
0
nt−1)

2
)) = 1 + σ2(1− ρ).

3. Ē(E(Dnt−1Dnt)
E(Dnt−1)

) = Ē(
E((1+δnt)(1−δnt−2+δ2nt−2))

E((1+δnt−1)(1−δnt−2+δ2nt−2))
) = Ē(

E(1−δnt−2+δ2nt−2+δnt−δntδnt−2+δntδ2nt−2)

E(1−δnt−2+δ2nt−2+δnt−1−δnt−1δnt−2+δnt−1δ2nt−2)
).

Use a to denote E(−δnt−2+δ2nt−2+δnt−δntδnt−2+δntδ2nt−2) and b to denote E(−δnt−2+

δ2nt−2 + δnt−1 − δnt−1δnt−2 + δnt−1δ
2
nt−2).

Then Ē(E(Dnt−1Dnt)
E(Dnt−1)

) = Ē(1+a
1+b

) ≈ Ē((1+a)(1−b+b2)) = Ē(1+a−b−ab+b2+ab2).

From here tedious but straight-forward calculations1 using only the definition of δ0nt

lead to:

Ē(a) = σ2(1−ρ2), Ē(b) = σ2(1−ρ), and Ē(ab) ≈ σ2c(1−ρ2). In this approximation

we ignore all terms of order σ4 and higher.

In addition, Ē(b2) = 2σ2c(1− ρ) and Ē(ab2) ≈ 0.

4. Ē(E(Dnt−sDnt)
E(Dnt−1)

) = Ē(
E((1+δnt)(1−δnt−s+δ2nt−s))
E((1+δnt−1)(1−δnt−s+δ2nt−s))

) = Ē(
E(1−δnt−s+δ2nt−s+δnt−δntδnt−s+δntδ2nt−s)

E(1−δnt−s+δ2nt−s+δnt−1−δnt−1δnt−s+δnt−1δ2nt−s)
).

As above, let c denoteE(−δnt−s + δ2nt−s + δnt − δntδnt−s + δntδ
2
nt−s), and let d denote

E(−δnt−s+ δ2nt−s+ δnt−1− δnt−1δnt−s+ δnt−1δ
2
nt−s). Then Ē(E(Dnt−sDnt)

E(Dnt−1)
) = Ē( 1+c

1+d
) ≈

Ē((1 + c)(1− d+ d2)) = Ē(1 + c− d− cd+ d2 + cd2). From here

Ē(c) = σ2(1− ρs), Ē(d) = σ2(1− ρs−1). Ē(cd) ≈ σ2c(1− ρs) (in this approximation

we ignore all terms of order σ4 and higher), Ē(d2) = 2σ2c(1−ρs−1), and Ē(cd2) ≈ 0.

Proof of Proposition 3:
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Substitute the expressions from Lemma B2 into the expressions below to get the

expressions in the proposition.

Ē(plimN→∞ µEW,t) = Ē(E(R0
nt)) = Ē(E(RntDnt)) = Ē(E(RntE(Dnt|X, n))).

Ē(plimN→∞ µRW,t) = Ē(E(Rnt−1RntDntDnt−1)
E(Rnt−1Dnt−1)

) = E(Rnt−1Rnt)
E(Rnt−1)

Ē E(DntDnt−1)
E(Dnt−1)

.

Ē(plimN→∞ µRW (s),t) = Ē(E(Rnt−1,sRntDntDnt−1,s)

E(Rnt−1,sDnt−1,s)
) = E(Rnt−1,sRnt)

E(Rnt−1,s)
Ē E(DntDnt−1,s)

E(Dnt−1,s)
.

Ē(plimN→∞ µVW , t) = Ē(E(Pnt−1Rnt(1+δnt)Sn)
E(Pnt−1(1+δnt−1)Sn)

) = E(Pnt−1RntSn)
E(Pnt−1Sn)

Ē( E(1+δnt)
E(1+δnt−1)

).

Proof of Proposition 4:

Ē(plimN→∞β̃EW,t) = Ē(
[
E(X̃′ntX̃nt)

]−1
E(X̃′ntX̃ntDnt)β̃) =

=
[
E(X̃′ntX̃nt)

]−1
Ē(E(X̃′ntX̃ntDnt)β̃)) =

[
E(X̃′ntX̃nt)

]−1
E(X̃′ntX̃ntĒ(Dnt)β̃)) =

=
[
E(X̃′ntX̃nt)

]−1
E(X̃′ntX̃nt(1 + σ2

n(1− ρ))β̃)).

Ē(plimN→∞β̃RW,t) =

= Ē{
[
E(X̃′ntX̃nt(X̃nt−1β̃)Dnt−1)

]−1
E(X̃′ntX̃nt(X̃nt−1β̃)Dnt−1Dnt)β̃} =

=
[
E(X̃′ntX̃nt(X̃nt−1β̃))

]−1
E(X̃′ntX̃nt(X̃nt−1β̃))β̃}Ē(E(Dnt−1Dnt)

E(Dnt−1)
) = β̃Ē(E(Dnt−1Dnt)

E(Dnt−1)
).

Ē(plimN→∞β̃RW(s),t) ≈ β̃Ē(E(Dnt−1,sDnt)

E(Dnt−1,s)
).

Ē(plimN→∞β̃VW,t) ≈ β̃Ē( E(1+δnt)
E(1+δnt−1)

).

Appendix C: Evaluating the Proposed Corrections in the Presence of Time

Variation in Discount Rates

In this appendix we consider the performance of the RW , IEW , and VW corrections

in the presence of stationary time-varying discount rates. As noted in Section II, the

distinguishing characteristic of noise in transaction prices is that noise is temporary,

and is reversed over time. However, not all temporary components in prices necessarily

reflect noise. Poterba and Summers (1988), among others, have observed that time

variation in required returns, i.e., in the discount rates used to assess the present value of

dividends, induces a transitory component in prices. To the extent that such variation in

discount rates reflects variation in economic fundamentals such as risk aversion, volatility,
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investment opportunities, etc., a temporary component is induced in true prices. Time

variation in discount rates is empirically important: Cochrane (2011) reports that as much

as half of time variation in market returns (and essentially all of the time variation in

price-dividend ratios) can be attributed to discount-rate variation.

Of course, discount-rate variation need not be rational: Cochrane (2011, p. 1067)

observes that “Behavioral theories are also discount-rate theories.” Economic models

are required to ascertain the extent to which the observed variation in discount rates

is consistent with rational vs. behavioral explanations. Such evaluation is beyond the

scope of this paper. We note that, to the extent that discount-rate variation reflects

behavioral sources the resulting temporary component in prices comprises noise, for

which we evaluate corrections. In contrast, to the extent that the discount-rate variation

reflects economic fundamentals the resulting temporary component in prices should not be

interpreted as noise, and requires no correction. We assess in this appendix the potential

effect of time variation in discount rates on the properties of the RW , IEW , and VW

estimators.

To be conservative, we assume for this analysis that all variation in discount rates

is due to economic fundamentals, and none is due to behavioral explanations. Also,

to assess the maximum feasible effect, we also assume that all variation in true market

returns is attributable to variation in discount rates, i.e. that none of the variation

in market returns is due to changing expectations regarding dividends. We first develop

closed form solutions for the effect of the RW correction on time-series and cross-sectional

mean returns in a simplified setting where prices contain no noise. We then modify the

simulations described earlier to allow for time varying market discount rates, and assess

the resulting effects on the properties of the corrected estimates of means and regression

coefficients in a more realistic setting. We rely on the return decomposition of Campbell

and Shiller (1988), and the extensions thereof presented by Campbell (1991, 2001).
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A. Closed Form Solutions in a Simple Setting

We first consider what might be viewed as a “worst-case” scenario. There is no noise

in prices, implying that no corrections are required. However, there is a temporary

component in market prices, due to stationary time-varying discount rates. Further,

we make the extreme and unrealistic assumption that all variation in ex post market

returns is attributable to rational changes in discount rates, and none is due to variations

in dividend expectations or behavioral explanations. A researcher mistakenly implements

the RW correction for noise when calculating mean returns. How much damage is done?

Following Campbell (2001), the expected stock return, xt, is assumed to follow an

AR(1) process,

xt+1 = φxt + ut+1, − 1 < φ < 1. (C-1)

If φ is zero discount rates vary randomly, while as φ increases discount-rate changes

become more persistent. Relying on the log-linear return decomposition of Campbell and

Shiller (1988), realized (log) returns can be expressed as (Campbell, 2001, expression 2.5):

rt+1 = xt + vd,t+1 −
κut+1

1− κφ
, (C-2)

where vd,t+1 is the change from t to t+ 1 in the expectation of the discounted (at rate κ)

value of future dividends. The factor κ is approximately the inverse of 1 plus the average

dividend yield.

The variance of log returns is given by expression (2.6) in Campbell (2001) as:

σ2
r =

1− 2κφ+ κ2

(1− κφ)2
σ2
x + σ2

d −
2κ

1− κφ
σdx, (C-3)

where σ2
x = V ar(xt+1), σ

2
d = V ar(vd,t+1), and σdx = Cov(vd,t+1, xt+1), which we rewrite
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as:

σ2
r = Aσ2

x + σ2
d −Bσdx, (C-4)

where A = 1−2κφ+κ2
(1−κφ)2 and B = 2κ

1−κφ .

We follow Campbell (2001) in using the approximation κ = 1,2 in which case A = B,

and the first-order serial covariance of returns is given by expression (2.9) in Campbell

(2001), as:

cov(rt−1, rt) = σdx − σ2
x. (C-5)

The preceding expressions pertain to log returns, while our analysis considers simple gross

returns. However, a first-order Taylor series approximation establishes that variance and

first-order serial covariance of simple gross returns are approximately equal to their log

return counterparts.

To place an upper bound on the potential damage caused by implementing the

RW correction we impose the extreme assumption that all variation in realized returns

is caused by variation in discount rates (and thus none of the variation in returns

is attributable to variation in dividend expectations or noise). In particular, we set

σ2
d = σdx = 0, which implies σ2

x =
σ2
R

A
, where A = 2

1−φ , or

σ2
x =

σ2
R(1− φ)

2
. (C-6)
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Time-Series Mean Returns

The bias in an estimate of the series mean return obtained by use of RW estimator is

given by

plim µRW − µ =
E(Rt−1Rt)

E(Rt−1)
− E(Rt) =

Cov(Rt−1, Rt)

E(Rt−1)
, (C-7)

where expectations and covariances are in the time series. Relying on equation (C-6), we

have in this extreme case

plim µRW − µ = −σ
2
R(1− φ)

2E(Rt)
. (C-8)

The bias in the time-series mean return induced by the RW correction is negative, and is

largest in absolute magnitude when φ = 0. Even in this extreme case the bias is modest.

For example, if the return standard deviation is 4.5% and the expected gross return is

1.009 the downward bias is just 10 basis points per month.3 In the more realistic case

where expected returns are persistent, the bias is mitigated. For example, Campbell

(1991, page 168) indicates that the empirical evidence is consistent with φ for monthly

returns approximately equal to 0.8. If so, the downward bias is reduced in this case to

2 basis points per month, despite the fact that we continue to impose the unrealistic

assumption that all variation in returns is attributable to rational discount-rate variation.

Cross-sectional Mean Returns

We next assess the bias introduced to the estimated cross-sectional mean return when

the RW correction is implemented even though it is not required. We consider the case

where the expected return to each security is linked to the overall market return by

constant, security specific beta coefficients, and all variation in market returns is due to
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rational changes in discount rates. In particular,

E(Rnt|n,Rmt) = 1 + α + βn(Rmt − 1). (C-9)

Here, expectations are cross-sectional, and are conditional on the time-t market return,

implying that

E(Rnt) = Rmt. (C-10)

The plim of the bias in period t is plimN→∞ µRW,t − µ = E(Rnt−1Rnt)
E(Rnt−1)

− E(Rnt) =

Cov(Rnt−1,Rnt)
E(Rnt−1)

, where expectations and covariances are cross-sectional, and are conditional

on the time-t market return.

We will evaluate the mean (across t) bias, or Ē(Cov(Rnt−1,Rnt)
E(Rnt−1)

), where the bar indicates

that the expectation is taken in the time series. We thus have:

Cov(Rnt−1,Rnt)
E(Rnt−1)

= Cov(βn(Rmt−1−1),βn(Rmt−1))
Rmt−1

=
σ2
β(Rmt−1−1)(Rmt−1)

Rmt−1
= σ2

β(Rmt−1+ 1−Rmt
Rmt−1

) ≈

≈ σ2
β (Rmt − 1 + (1−Rmt)(2−Rmt−1)) , (C-11)

where σ2
β is the cross-sectional variance of security beta coefficients.4

It follows that

Ē(bias) = Ē(
Cov(Rnt−1, Rnt)

E(Rnt−1)
) ≈ σ2

βĒ(Rmt − 1 + (1−Rmt)(2−Rmt−1))

= σ2
β

(
1− 2Ē(Rmt) + Ē(RmtRmt−1)

)
σ2
β(1− 2Ē(Rmt) + Cov(Rmt, Rmt−1) + Ē(Rmt)

2)

= σ2
β

(
(Ē(Rmt)− 1)2 + Cov(Rmt, Rmt−1)

)
. (C-12)

Imposing the condition σ2
d = σdx = 0 for market returns, we have Cov(Rmt, Rmt−1) =

−σ2
Rm

(1−φ)
2

and as a result

Ē(bias) = σ2
β

((
Ē(Rm)− 1

)2 − σ2
Rm

(1− φ)

2

)
. (C-13)
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Notably, there is no bias in the cross-sectional mean return if all betas are equal. The

bias, which depends also on the mean market return, the variance of market returns, and

the persistence in market discount rates φ, is positive when φ = 1 (implying that discount

rates are not mean reverting) and for reasonable market parameters is negative when φ

is small. In any case, the induced bias is minuscule. For example, if the cross-sectional

standard deviation of beta is 0.5, the standard deviation of market returns is 4.5%, and

the expected net market return is 0.9%, the bias ranges from -2 basis points when φ =

0 to 2 basis points when φ = 1. We emphasize again that the bias is minuscule though

we assume that all variation in market returns is attributable to rational discount-rate

changes, and none is due to changes in dividend expectations or mispricing.

B. Simulation Analysis in a More Complex Setting

The preceding analysis demonstrates, in a simplified setting, that the “damage”

imposed by implementing the RW correction when true prices contain a temporary

component due to variation in discount rates is minuscule. For robustness, we assess

through an extension of the simulations reported in Section II.D above the generality of

this conclusion in a more realistic setting. In particular, we allow for noise in observed

prices, for cross-sectional variation in mean returns related to market beta, illiquidity, and

firm size, and for non-zero correlations between noise variance and firm characteristics.

Parameters of the simulation are identical to those described in Section II.D above, except

that we replace the independently distributed true market returns with market returns

that reflect time variation in discount rates, as in expression (A-2) above. We extend the

analysis to the VW and IEW corrections as well, and consider the effect on cross-sectional

regression slope coefficients as well as mean returns.

Also, since the intent here is to rely on parameters that are as realistic as possible,

we do not incorporate the extreme assumption that all variation in market returns

is attributable to changes in discount rates. Instead, we incorporate the empirical
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observation of Campbell (1991, page 168) that “slightly more than a third of the variance

of unexpected returns is attributed to the variance of news about future cash flows,

slightly less than a third is attributed to the variance of news about future returns, and

the remainder is due to the covariance term.” Thus, we allocate one third of the stock

return variance to each of the three terms in expression C-3, implying:

σ2
d =

σ2
r

3
(C-14)

σ2
x =

σ2
r

3A
(C-15)

σdx =
−σ2

r

3B
=
−σ2

d

B
(C-16)

Campbell (2001) also notes that:

σdx = σdu (C-17)

and

σ2
u = (1− φ2)σ2

x. (C-18)

To impose the correct covariance in our simulations, we use expression (C-16) and (C-17)

and define u as a linear projection on vd:

u = γvd + ω, (C-19)

where

γ =
σdu
σ2
d

=
σdx
σ2
d

=
−1

B
. (C-20)

From expression (C-19) we have σ2
u = γ2σ2

d + σ2
ω. Substituting from expressions (C-14),
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(C-15), (C-17), and (C-18) we have:

σ2
ω =

(
1− φ2

A
− 1

B2

)
σ2
r

3
. (C-21)

To be consistent with the prior simulations σ2
r is set as 0.0552. The simulated true market

returns are created as follows: we specify σ2
d according to expression (C-14), σ2

ω according

to expression (C-21), and γ = −1
B

according to expression (C-20). We create simulated

outcomes assuming zero-mean normal distributions for vd and ω, define u according to

expression (A-12) and x by equation (C-1), and then compute log returns according to

equation (C-2). Log returns are converted to equivalent simple returns, and we add the

constant .01 - σ2
r/2 to ensure that the simulated simple returns have a mean of .01, as in

the earlier simulations. We do so for various possible levels of the φ parameter. Having

done so, we conduct simulations identical to those described in Section II.D, except for

the use of true market returns that reflect time variation in discount rates as described.

Simulation Results

We first discuss the simulation results with regard to the estimation of the cross-

sectional mean return. Figure C1(a) displays the average (across 30,000 replications) of

the bias in the estimated RW , VW , IEW , and the OLS mean returns, as a function of

the parameter φ ranging from 0 to 0.9, when the parameters C are ρ are both 0. Figure

C1(b) displays corresponding results when ρ = c = 0.5. To highlight the incremental

effect of allowing for time variation in discount rates, Figures C1(c) and C1(d) display the

differences between the biases obtained here and the biases that obtained in corresponding

simulations with independent true market returns (as presented in section II.D).

<Figure C1 about here>
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As evident from the figures, the main determinant of the bias in the weighted

estimators is the values of the ρ and c parameters that pertain to the behavior of the

noise in prices, while, as in the theoretical development in the simplified setting, the

effect of time variation in discount rates is very small. In particular, when ρ = c = 0, the

RW bias is in the range of −1.2 to 1.2 basis points (depending on φ), and the RW bias

differs by at most 2.5 basis points from the corresponding bias when discount rates are

constant. The corresponding ranges for the biases in the VW and IEW estimators are

-7 to -5 and 4 to 5 basis points. The differential bias as compared to the corresponding

simulations without time varying discount rates are uniformly less than 3 basis points for

both estimators.

When ρ = c = 0.5, the RW bias ranges between 14 and 17 basis points. The

corresponding bias range for the VW estimator is 6 to 7.5 basis points, and for the

IEW estimator is 17 to 19 basis points. However, all three estimators showed similar

bias when market returns were independent. For all three estimators, the differential bias

as compared to the corresponding cases where discount rates are constant is at most 3

basis points. Thus, the simulations confirm that the effect of time-varying discount rates

on corrected estimates of the cross-sectional mean return are monotone in φ, and are very

small in magnitude, even in a more complex and realistic setting.

Finally, we assess the properties of the bias in the regression slope coefficients estimated

from the simulated observed returns. As before, we focus our discussion on the estimation

of the return premium on illiq. Figures C1(e) and C1(f) display the average bias in slope

coefficients obtained by the different weighting method, for the φ parameter ranging from

0 to 0.9, for ρ = c = 0 and ρ = c = 0.5 correspondingly. For all practical purposes,

the slopes are not affected by time variation in discount rates, and the differences in

biases obtained here and corresponding biases with constant discount rates as presented

in Section II.D is essentially zero.

In summary, the corrections proposed here remain effective in the presence of time

84



variation in market discount rates. The marginal impact of time variation in market

discount rates on the bias in the corrected estimators is generally two basis points or less.

By comparison, the empirical effect of implementing the corrections reported here are

much larger in absolute magnitude. We conclude that time variation in market discount

rates does not appreciably affect the performance of the estimators proposed and has little

to no impact on the empirical results reported here.
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Footnotes

1The calculations are available from the authors upon request.

2Campbell, Lo, and MacKinlay (1996, Chapter 7) note that empirically in US data

over the period 1926 to 1994 the average dividend-price ratio has been about 4% annually,

implying that κ should be about 0.96 in annual data, or about 0.997 in monthly data.

3The mean and standard deviation noted are in line with outcomes for CRSP VW

returns from 1963 to 2009. While VW index returns potentially contain noise the effect

on the mean return is likely to be small. Further, to the extent that the standard deviation

of observed VW returns exceeds that of true VW returns, the effect is to overstate the

potential biases attributable to time-varying discount rates.

4This relies on the first-order Taylor series approximation 1
Rmt−1

≈ 2−Rmt−1

86



References

Campbell, John Y., 1991, A variance decomposition for stock returns, The Economic
Journal 101, 157–179.

Campbell, John Y., 2001, Why long horizons? A study of power against persistent
alternatives, Journal of Empirical Finance 8, 459–491.

Campbell, John Y., Andrew W. Lo, and A. Craig MacKinlay, 1996. The Econometrics of
Financial Markets (Princeton University Press).

Campbell, John Y. and Robert J. Shiller, 1988, The dividend-price ratio and expectations
of future dividends and discount factors, The Review of Financial Studies 1, 195–228.

Cochrane, John H., 2011, Presidential Address: Discount Rates, The Journal of Finance
66, 1047–1108.

Poterba, James M., and Lawrence H. Summers, 1988, Mean reversion in stock prices:
Evidence and implications, Journal of Financial Economics 22, 27–59.

87



Figure C1. Simulation Results: The Effect of Time-Varying Discount Rates
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(a) Mean bias when c = ρ = 0.
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(b) Mean bias difference in time-varying vs.
constant discount rates, c = ρ = 0.
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(c) Mean bias when c = ρ = 0.5.
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(d) Mean bias difference in time-varying vs.
constant discount rates, c = ρ = 0.5.
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(e) Slope bias when c = ρ = 0.
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(f) Slope bias when c = ρ = 0.5.
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