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Abstract

For over thirty years, the model of Lucas (1978) has been the platform of research

on dynamic asset pricing and business cycles. This model restricts the intertempo-

ral behavior of asset prices and ties those restrictions to cross-sectional behavior (the

“equity premium”). The intertemporal restrictions reject the strictest interpretation

of the Efficient Markets Hypothesis, namely, that prices should follow a martingale.

Instead, prices move with economic fundamentals, and to the extent that these fun-

damentals are predictable, prices should be too. The Lucas model also prescribes the

investment choices that facilitate smoothing of consumption over time. Here, we re-

port results from experiments designed to test the primitives of the model. Our design

overcomes, in novel ways, challenges to generate demand for consumption smoothing

in the lab, and to induce stationarity in spite of the finite duration of lab experiments.

The experiments provide overall support for the price and allocation predictions of

the model, although the intertemporal price predictability is too small given observed

cross-sectional price differences. Investment choices are, in turn, consistent with the

low level of price predictability.1
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1 Motivation

Over the last thirty years, the Lucas model (Lucas, 1978) has been the main platform

that has guided the empirical research on dynamic asset pricing and business cycles. It

has also become the dominant source of inspiration to financial regulators and central

bankers for policy formulation.

The Lucas model delivers the core cross-sectional prediction of virtually all static

asset pricing models, namely that a stock’s expected return increases in the covariation

(“beta”) of this return with the aggregate consumption. Importantly, however, the Lu-

cas model also provides an extension to the static approach, in making clear predictions

about the intertemporal behavior of asset prices, and linking those to the cross-sectional

restrictions. Specifically, it predicts that prices should co-move with economic funda-

mentals (aggregate consumption), and the amount of co-movement should increase

with risk aversion. As such, if cross-sectional dispersion in expected returns is high

because risk aversion is high, then the time-series co-movement between prices and eco-

nomic fundamentals should be high as well. An immediate consequence is that prices

will become predictable from the moment economic fundamentals are predictable.

The latter insight is what makes the Lucas model an invaluable formal framework

within which to gauge the true empirical content of the Efficient Markets Hypothesis

(EMH; Fama (1991)). Contrary to early versions of the EMH, prices need not follow a

random walk (Malkiel, 1999) or even form a martingale (Samuelson, 1973). As Lucas

criticizes in Section 8 of his article (Lucas, 1978): “Within this framework, it is clear

that the presence of a diminishing marginal rate of substitution [...] is inconsistent

with the [martingale] property.”

The Lucas model is the equilibrium outcome from exchange between investors who

each solve a complex dynamic programming problem whereby consumption is smoothed

as much as possible given available securities, income flows, knowledge of the nature

of dividend and income processes, and correct anticipation of (equilibrium) price pro-

cesses. The latter makes the Lucas equilibrium an instantiation of Radner’s perfect

foresight equilibrium (Radner, 1972). Because they result from the solutions of complex

problems, equilibrium investment policies can be very complicated, and may exhibit

the hedging features that were first identified to be important to dynamic asset pricing

in Merton (1973b) and that have become the core of the modern theory of derivatives

analysis (Black and Scholes, 1973; Merton, 1973a).

On the empirical side, tests of the Lucas model have invariably been applied to

historical price (and consumption) series in the field. Little attention has been paid to
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its choice (investment) predictions. Starting with Mehra and Prescott (1985), the fit

has generally been considered to be poor. Attempts to “fix” the model have concen-

trated on the auxiliary assumptions rather than on its primitives. Some authors have

altered the original preference specification (time-separable expected utility) to allow

for, among others, time-nonseparable utility (Epstein and Zin, 1991), loss aversion

(Barberis et al., 2001), or utility functions that assign an explicit role to an important

component of human behavior, namely, emotions (such as disappointment; Routledge

and Zin (2011)). Others have looked at measurement problems, extending the scope

of aggregate consumption series in the early empirical analysis (Hansen and Singleton,

1983), to include nondurable goods (Dunn and Singleton, 1986), or acknowledging the

dual role of certain goods as providing consumption as well as collateral services (Lustig

and Nieuwerburgh, 2005). Included in this category of “fixes” should be the long-run

risks model of (Bansal and Yaron, 2004) because it is based on difficulty in recovering

an alleged low-frequency component in consumption (growth).

Evidently, this body of empirical and theoretical research does not question the

primitives of the model, namely, the claim that markets settle on a stationary Radner

equilibrium where prices are measurable functions of fundamentals. The veracity of

equilibration would be difficult to test on field data anyway. The problem is that we

cannot observe the structural information (aggregate supply, beliefs about dividend

processes, etc.) that is crucial to knowing whether markets settle at an equilibrium.

(This is closely related to the Roll critique (Roll, 1977).) By contrast, laboratory

experiments provide control over and knowledge of all important variables.

Thus, the first goal of the research reported on here is to bring the Lucas model to

the laboratory and to test its primitives.

Since Keim and Stambaugh (1986), empirical research on the time-series properties

of asset prices has been confirming that returns are predictable – or at least have a sig-

nificant predictable component, even if such predictability is elusive at times because

it is hard to recover out-of-sample (Bossaerts and Hillion, 1999). Two possible expla-

nations have been advanced for this predictability. One points to the Lucas model and

argues, like we did above, that predictability is implied by equilibrium (Bossaerts and

Green, 1989; Berk and Green, 2004). Indeed, even some of the most puzzling aspects of

predictability can be shown to be equilibrium implications of simple assumptions about

the structure of the economy (Brav and Heaton, 2002; Li et al., 2009). The second one

is that predictability is an aggregate expression of the many cognitive biases that have

been demonstrated at the individual level; this is the core thesis of Behavioral Finance

(Bondt and Thaler, 1985).
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The second goal of our research, then, is to inform the controversy about predictabil-

ity of returns in asset markets as it relates to the EMH. Can we generate predictability

in the laboratory, and if so, is its nature consistent with the Lucas model?

The design of such an experiment is challenging, because the Lucas model assumes

that the world is stationary, continues forever, and that investment demands are driven

primarily by the desire to smooth consumption. Of these challenges, the infinite horizon

is the easiest to deal with: one merely has to introduce a stochastic ending time;

see Camerer and Weigelt (1996). The finite experiment duration, however, makes

stationarity particularly difficult to induce, as beliefs necessarily change when time

approaches the officially announced termination of the experiment. Likewise, it is

difficult to imagine that participants care when they receive their earnings over the

course of the experiment, which potentially negates the assumption of preferences for

earnings smoothing.

We introduce novel features to the design of an intertemporal asset pricing exper-

iment that overcome these challenges. Their validity hinges in part on an important

component of the (original) Lucas model, namely, time-separable utility. We make

sure that time separability follows naturally from our design, and would only fail if

participants did not have expected utility preferences.

The proposed experiment is related to Crockett and Duffy (2010). There are at

least two major differences, however. First, we do not induce demand for smoothing

by means of nonlinearities in earnings as a function of experiment payoffs, but generate

it as the result of a novel experimental design feature. The predicted cross-sectional

pricing patterns are therefore driven entirely by the uncertainty of the dividends of (one

of) the assets, exactly as in the original Lucas model, unconfounded by nonlinearities.

Second, we explicitly address the issue of finite experiment duration when implementing

a stationary termination protocol.

The remainder of this paper is organized as follows. Section 2 introduces the Lucas

model by means of a stylized example that will form the basis of the experiment.

Section 3 details the experimental design. Section 4 presents the results from a series

of six experimental sessions. Section 5 provides discussion. The last section concludes.

2 The Lucas Asset Pricing Model

We envisage an environment with minimal complexity yet one that generates a rich

set of predictions about prices across time and allocations across types of investors.

Perhaps most importantly, the environment is such that trading is necessary in each
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period. Inspired by Bossaerts and Zame (2006), we want to avoid a situation (as in

Judd et al. (2003)), where theory predicts that trade will take place only once. When

bringing the setting to the laboratory, it would indeed be rather awkward to give

subjects the opportunity to trade every period while the theory predicts that they

should not!

For our theoretical benchmark, we consider a stationary, infinite horizon economy

in which infinite-lived agents with time-separable expected utility are initially allocated

two types of assets: (i) a Tree that pays a stochastic dividend of $1 or $0 every period,

each with 50% chance, independent of past outcomes, and (ii) a (consol) Bond that

always pays $0.50.

There is an equal number of two types of agents. Type I agents receive income of

$15 in even periods (2, 4, 6,...), while those of Type II receive income of $15 in odd

periods. As such, total (economy-wide) income is constant over time. Before period 1,

Type I agents are endowed with 10 Trees and no Bonds; Type II agents start with 0

Trees and 10 Bonds.

Assets pay dividends dk,t (k ∈ {Tree,Bond}) before period t (t = 1, 2, ...) starts. At

that point, agents also receive their income, yi,t (i = 1, ..., I), as prescribed above. As

dividends and income are fungible, we refer to them as cash, and cash is perishable.

In what follows, ci,t denotes the cash available to agent i in period t . Agents have

common time-separable utility for cash:

Ui({ci,t}∞t=1) = E

{ ∞∑
t=1

βt−1u(ci,t)

}
. (1)

Markets open and agents can trade their Trees and Bonds for cash, subject to a stan-

dard budget constraint. To determine optimal trades, agents take asset prices pk,t

(k ∈ {Tree,Bond}) as given, and correctly anticipate (à la Radner (1972)) that future

prices are a time-invariant function of the only variable economic fundamental in the

economy, namely, the dividend on the Tree dTree,t. In particular they know that prices

are set as follows:

pk,t = βE[
u′(ci,t+1)

u′(ci,t)
(dk,t+1 + pk,t+1)]. (2)

We shall not go into details here, because the derivation of the equilibrium is standard.

Instead, here are the main predictions of the resulting (Lucas) equilibrium. For the

parametric illustrations, we set β = 5/6, and we assume constant relative risk aversion;

if risk aversion equals 1, agents are endowed with logarithmic utility (u(ci,t) = log(ci,t)).
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Table 1: Equilibrium Prices And ‘Equity Premium’ As A Function Of (Constant Relative)

Risk Aversion And State (Level Of Dividend On Tree).

Risk Aversion State Tree Bond (‘Equity Premium’)

0.1 High 2.50 2.55 (0.05)

Low 2.40 2.45 (0.05)

(Difference) (0.10) (0.10) (0)

0.5 High 2.50 2.78 (0.22)

Low 2.05 2.27 (0.22)

(Difference) (0.45) (0.51) (0)

1 High 2.50 3.12 (0.62)

Low 1.67 2.09 (0.42)

(Difference) (0.83) (1.03) (0.20)

1. Cross-sectional Restrictions: Because the return on the Tree has higher co-

variability (or “beta”) with aggregate consumption (which varies only because of

the dividend on the Tree), its equilibrium price is lower than that of the Bond,

replicating a well-known result from static asset pricing theory. Note that this

result is far from trivial: returns are determined not only by future dividends, but

also future prices, and it is not a priori clear that prices behave like dividends!

With logarithmic utility, the difference between the price of the Tree and that of

the Bond is $0.62 if the dividend on the Tree is high ($1), and $0.42 when this

dividend is low ($0). See Table 1. This table also lists prices and correspond-

ing ‘equity premia’ for risk aversion coefficients equal to 0.5 (square-root utility)

and 0.1.2 To be somewhat consistent with prior work, we refer to the difference

between the Bond and Tree prices as the ‘equity premium.’ Usually, the equity

premium is defined as the difference in the expected yield (return) on risky secu-

rities and the riskfree rate. Because of the inverse relationship between yield and

price, we here refer to the ‘equity premium’ as the difference between the Bond

price and the Tree price. Our ‘equity premium’ increases in the standard equity

premium.

2. Intertemporal Restrictions: Asset prices depend on the dividend on the Tree.

2The equilibrium prices are unique; in particular, they do not depend on the State outcome in Period 1

(State = dividend on tree).
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With logarithmic utility, the Tree price is $2.50 when the Tree dividend is high,

and $1.67 when it is low; the corresponding Bond prices are $3.12 and $2.09. See

Table 1. Such prices induce substantial predictability in the asset return series:

when the dividend of the Tree is high, the expected return on the Tree is only

3.4% (equal to (0.5.∗ (2.50+1)+0.5∗1.67)/2.5−1) while it equals 55% when the

dividend on the Tree is low! This predictability contrasts with simple formulations

of EMH (Fama, 1991) which posit that expected returns are constant.

3. Linking Cross-sectional and Intertemporal Restrictions: as risk tolerance

increases, the (cross-sectional) difference between the prices of the Tree and the

Bond diminishes, as does the time-series dependence of prices on economic fun-

damentals. Table 1 shows how the difference in prices of an asset decreases with

risk aversion (the Tree price difference decreases from 0.83 to 0.45 and 0.10 as one

moves from logarithmic utility down to risk aversion equal to 0.5 and 0.1) while

at the same time the ‘equity premium’ (averaged across states) drops from 0.52

to 0.22 to 0.05. In the extreme case of risk neutrality, both the Tree and Bond

are priced at a constant $2.50. As a matter of fact, for the range of risk aversion

coefficients between 0 (risk neutrality) and 1 (logarithmic utility), the correlation

between the difference in prices across states and the ‘equity premium’ (averaged

across states) equals 0.99 for the Tree and 1.00 for the Bond!3

4. Equilibrium Consumption: In equilibrium, consumption across types should

be perfectly rank-correlated. With only two (dividend) states, this means that

consumption for both types is high in the high state and low in the low state.

Since we assume that agents have identical preferences, they should consume a

constant fraction of the aggregate cash flow (the total of dividends and incomes).

Thus, agents fully offset their income fluctuations and as a result obtain smooth

consumption.

5. Trading for Consumption Smoothing: Agents obtain equilibrium consump-

tion smoothing mostly through exploiting the price differential between Trees and

Bonds: when they receive no income, they sell Bonds and buy Trees, and since

the Tree is always cheaper, they generate cash; conversely, in periods when they

do receive income, they buy (back) Bonds and sell Trees, depleting their cash

because Bonds are more expensive. See Table 2.4

3The relationship is slightly nonlinear, which explains why the correlation is not a perfect 1.
4Equilibrium holdings and trade do not depend on the state (dividend of the Tree). However, they do

depend on the state in Period 1. Here, we assume that the state in Period 1 is high (i.e., the Tree pays a
dividend of $1). When the state in Period 1 is low, there is a technical problem for risk aversion of 0.5 or
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Table 2: Type I Agent Equilibrium Holdings and Trading As A Function Of (Constant

Relative) Risk Aversion And Period (Odd; Even).

Risk Aversion Period Tree Bond (Total)

0.1 Odd 5.17 2.97 (8.14)

Even 4.63 6.23 (10.86)

(Trade in Odd) (+0.50) (-3.26)

0.5 Odd 6.32 1.96 (8.28)

Even 3.48 7.24 (10.72)

(Trade in Odd) (+2.84) (-5.28)

1 Odd 7.57 0.62 (8.19)

Even 2.03 7.78 (9.81)

(Trade in Odd) (+5.54) (-7.16)

6. Trading to Hedge Price Risk: Because prices move with economic funda-

mentals, and economic fundamentals are risky (because the dividend on the Tree

is), there is price risk. When they sell assets to cover an income shortfall, agents

need to insure against the risk that prices might change by the time they are

ready to buy back the assets. In equilibrium, prices increase with the dividend

on the Tree, and agents correctly anticipate this. Since the Tree pays a dividend

when prices are high, it is the perfect asset to hedge price risk. Consequently (but

maybe counter-intuitively!), agents buy Trees in periods with income shortfall and

they sell when their income is high. See Table 2, which shows, for instance, that

a Type I agent with logarithmic preferences will purchase more than 5 Trees in

periods when they have no income (Odd periods), subsequently selling them (in

Even periods) in order to buy back Bonds. Hedging is usually associated with

Merton’s intertemporal asset pricing model and is the core of modern derivatives

analysis. Here, it forms an integral part of the trading predictions in the Lucas

model.

In the experiment, we tested the above six, inter-related predictions.

higher: in Odd periods, agents need to short sell Bonds. In the experiment, short sales were not allowed.
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3 Implementing the Lucas Model

When planning to implement the above Lucas economy, three issues emerge.

a. Because actual consumption is not feasible until after the session concludes, it

would not make much of a difference if we were to pay subjects’ earnings gradu-

ally. So, there is no natural demand for consumption smoothing in a laboratory

experiment. This is why Crockett and Duffy resort to nonlinearities in payoff-

earnings relationships (Crockett & Duffy, 2010). Ideally, however, one would like

to avoid this, because nonlinearities are not part of the original Lucas model.

b. The Lucas economy has an infinite horizon, but an experimental session has to end

in finite time. A relatively simple fix exists for this problem, which is to end the

session stochastically (Camerer and Weigelt, 1996). This ending procedure also

introduces discounting: the discount factor will be proportional to the probability

of continuing the session.

c. The Lucas economy is stationary. In principle, this is also easy to fix, by applying

a constant termination probability: the chance that a period is the terminal one

for the session is constant; in particular, it does not depend on how long the

session has been lasting. But this is not satisfactory, because it means that the

experiment could go on forever, or at least, take much longer than a typical

experimental session (2-3 hours).

In our experiment, we used the standard solution to resolve issue (b), which is to

randomly determine if a period is terminal. We set the termination probability equal

to 1/6, which means that we induced a discount factor of β = 5/6 (the number used in

the theoretical calculations in the previous section). In particular, after the markets in

period t close, we rolled a twelve-sided die. If it came up either 7 or 8, we terminated;

otherwise we moved on to a new period.

To resolve issue (a), we made end-of-period individual cash holdings perish in each

period that was not terminal; only securities holdings carried over to the next period.

If a period was terminal, however, securities holdings perished. Participants’ earnings

were then determined entirely by the cash they held at the end of this terminal pe-

riod. As such, if participants have expected utility preferences, their preferences will

automatically become of the time-separable type that Lucas uses in his model, albeit

with an adjusted discount factor: the period-t discount factor becomes (1− β)βt−1. It

is straightforward to show that all results (prices; allocations) remain the same, sim-

ply because the new utility function to be maximized is proportional to the old one
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[Eqn. (1)] with constant of proportionality (1− β).

It is far less obvious how to resolve problem (c). Here, we propose a simple solution,

exploiting essential features of the Lucas model. It works as follows. We announce that

the experimental session will last until a pre-specified time and there will be as many

replications of the (Lucas) economy as can be fit within this time. If a replication

finishes at least 10 minutes before the announced end time, a new replication starts.

Otherwise, the experimental session is over. If a replication is still running by the

closing time, we announce before trade starts that the current period is either the last

one (if our die shows 7 or 8) or the penultimate one (for all other values of the die). In

the latter case, we move to the next period and this one becomes the terminal one with

certainty. This means that subjects will keep the cash they receive through dividends

and income for that period. (There will be no trade because assets perish at the end.)

It is straightforward to show that the equilibrium prices remain the same whether

the new termination protocol is applied or if termination continues to be determined

each period with the roll of a die. In the former case, the pricing formula is:5

pk,t =
β

1− β
E[
u′(ci,t+1)

u′(ci,t)
dk,t+1]. (3)

To see that the above is the same as the formula in Eqn. (2), apply the assumption of

i.i.d. dividends and the consequent stationary investment rules (which generate i.i.d.

consumption flows) to re-write Eqn. (2) as follows:

pk,t =
∞∑
τ=0

βτ+1E[
u′(ci,t+τ+1)

u′(ci,t+τ )
dk,t+τ+1]

= βE[
u′(ci,t+1)

u′(ci,t)
dk,t+1]

∞∑
τ=0

βτ

=
β

1− β
E[
u′(ci,t+1)

u′(ci,t)
dk,t+1],

which is the same as Eqn. (3).

5To derive the formula, consider agent i’s optimization problem in period t, which is terminal with

probability 1− β, and penultimate with probability β, namely: max (1− β)u(ci,t) + βE[u(ci,t+1)], subject

to a standard budget constraint. The first-order conditions are, for asset k:

(1− β)
∂u(ci,t)

∂c
pk,t = βE[

∂u(ci,t+1)

∂c
dk,t+1].

The left-hand side captures expected marginal utility from keeping cash worth one unit of the security; the

right-hand side captures expected marginal utility from buying the unit; for optimality, the two expected

marginal utilities have to be the same. Formula (3) obtains by re-arrangement of the above equation. Under

risk neutrality, and with β = 5/6, pk,t = 2.5 for k ∈ {Tree,Bond}
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Table 3: Summary data, all experimental sessions.

Session Place Replication Periods Subject

Number (Total, Min, Max) Count

1 Caltech∗ 4 (14, 1, 7) 16

2 Caltech 2 (13, 4, 9) 12

3 UCLA∗ 3 (12, 3, 6) 30

4 UCLA∗ 2 (14, 6, 8) 24

5 Caltech∗ 2 (12, 2, 10) 20

6 Utah∗ 2 (15, 6, 9) 24

(Overall) 15 (80, 1, 10)

We ran as many replications as possible within the time allotted to the experimental

session. In order to avoid wealth effects on subject preferences, we paid for only a fixed

number (say, 2) of the replications, randomly chosen after conclusion of the experiment.

(If we ran less replications than this fixed number, we paid multiples of some or all of

the replications.)

Sample instructions are included in this paper as an appendix.

4 Results

Until now (August 2011), we have conducted six experimental sessions, with the par-

ticipant number ranging between 12 and 30. Three sessions were conducted at Caltech,

two at UCLA, and one at the University of Utah. This generated 80 periods in total,

spread over 15 replications. Table 3 provides specifics. Our novel termination pro-

tocol was applied in all sessions. The starred sessions ended with a period in which

participants knew for sure that it was the last one, and hence, generated no trade.

We now present the experimental results.

Volume. Table 4 lists average trading volume per period (excluding periods in

which should be no trade). Consistent with theoretical predictions, trading volume in

Periods 1 and 2 is significantly higher; it reflects trading needed for agents to move to

their steady-state holdings. In the theory, subsequent trade takes place only to smooth

consumption across odd and even periods. Volume in the Bond is significantly lower

in Periods 1 and 2; this is an artefact of the few replications when the state in Period

1 was low. This deprived Type I participants of cash (Type I participants start with

10



Table 4: Trading volume.

Periods Tree Bond

Trade Volume Trade Volume

All

Mean 23 17

St. Dev. 12 11

Min 3 2

Max 59 58

1 and 2

Mean 30 21

St. Dev. 15 14

Min 5 4

Max 59 58

≥ 3

Mean 19 15

St. Dev. 8 9

Min 3 2

Max 36 41

10 Trees and no income). In principle, they should have been able to sell enough Trees

to buy Bonds, but evidently they did not manage to complete all the necessary trades

in the alotted time (four minutes).

Cross-Sectional Price Differences. Table 5 displays average period transaction

prices as well as the period’s state (“high” if the dividend of the Tree was $1; “low”

if it was $0). The table demonstrates that, consistent with the Lucas model, the

Bond is priced above the Tree (see Prediction 1 above), with price differential (‘equity

premium’) of about $0.50. When checking against Table 1, this reflects a (constant

relative) risk aversion aversion coefficient of 1.

Prices Over Time. Figure 1 shows a plot of the evolution of (average) prices

over time, arranged chronologically by experimental sessions (numbered as in Table 3);

replications within a session are concatenated. The plot reveals that prices are noisy. In

theory, prices should move only because of variability in economic fundamentals, which

in this case amounts to changes in the dividend of the Tree (Prediction 2). Specifically,
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Table 5: Period-average transaction prices and corresponding ‘equity premium’.

Tree Bond ‘Equity

Price Price Premium’

Mean 2.75 3.25 0.50

St. Dev. 0.41 0.49 0.40

Min 1.86 2.29 -0.20

Max 3.70 4.32 1.79

Table 6: Mean period-average transaction prices and corresponding ‘equity premium,’ as a

function of state.

State Tree Bond ‘Equity

Price Price Premium’

High 2.91 3.34 0.43

Low 2.66 3.20 0.54

Difference 0.24 0.14 -0.11

prices should be high in high states, and low in low states. In reality, much more

is going on. In particular, contrary to the Lucas model, we detect price drift. The

direction of the drift is not always obvious; the drift appears to be stochastic.

Nevertheless, behind the noise, clear evidence in favor of the Lucas model emerges.

As Table 6 shows, prices in the high state are on average 0.24 (Tree) and 0.14 (Bond)

above those in the low state. The table does not display statistical information; (av-

erage) transaction prices are not i.i.d., so that we cannot rely on standard t tests to

determine significance. We will provide formal statistical evidence later on.

While prices in ‘good’ periods are higher than in ‘bad’ ones, the differential is too

small compared to the size of the ‘equity premium.’ The average ‘equity’ premium of

$0.50 reveals a coefficient of relative risk aversion of 1, and this level of risk aversion

would imply a price differential across states of $0.83 and $1.03 for the Tree and Bond,

respectively. See Table 1. In the data, the price differentials amount to only $0.24 and

$0.14. In other words, while there is predictability in price series, the co-movement

between prices and economic fundamentals is far lower than the Lucas model predicts.

Both Cross-Sectional And Time Series Price Properties. Still, the theory
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Figure 1: Time series of Tree (solid line) and Bond (dashed line) transaction prices; averages

per period. Session numbers underneath line segments refer to Table 3.
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also states that the differential in prices between ‘good’ and ‘bad’ periods should in-

crease with the ‘equity premium’ (Prediction 3). Table 7 shows that this is true in the

data. The observed correlation is not perfect (unlike in the theory), but marginally

significant for the Tree; it is insignificant for the Bond.

Table 6 also shows that the ‘equity premium’ is higher in periods when the state

is low than when it is high. This is inconsistent with the theory. The average level of

the ‘equity premium’ reveals logarithmic utility, and for this type of preferences, the

equity premium should be lower in bad periods; see Table 1.6

Prices: Formal Statistics. To enable formal statistical statements about the

6The requirement that the equity premium is higher in ‘good’ periods does not depend on the level of

risk aversion. But for lower levels of risk aversion, the difference in ‘equity premium’ is hardly detectible, as

is evident from Table 1.
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Table 7: Correlation between equity premium (average across periods) and price differential

of tree and bond across high and low periods.

Tree Bond

Correlation 0.80 0.52

(St. Err.) (0.40) (0.40)

price differences in ‘good’ and ‘bad’ states, we ran a regression of period transaction

price levels onto the state (=1 if high; 0 if low). To adjust for the time series dependence

revealed in Figure 1, we add session dummies and a time trend (Period number). In

addition, to gauge the effect of our session termination protocol, we add a dummy for

periods when we announce that the session is about to come to a close, and hence, the

period is either the penultimate or last one, depending on the draw of the die. Lastly,

we add a dummy for even periods. Table 8 displays the results.

We confirm the positive effect of the state on price levels. Moving from a low to

a high state increases the price of the Tree by $0.24, while the Bond price increases

by $0.11. The former is the same number as in Table 6; the latter is a bit lower. The

price increase is significant (p = 0.05) for the Tree, but not for the Bond.

The coefficient to the termination dummy is insignificant, suggesting that our termi-

nation protocol is neutral, as predicted by the Lucas model. This constitutes comforting

evidence that our experimental design was correct.

Closer inspection of the properties of the error term did reveal substantial depen-

dence over time, despite our including dummies to mitigate time series effects. Table 8

shows Durbin-Watson (DW) test statistics with value that correpond to p < 0.001.

Proper time series specification analysis revealed that the best model involved first

differencing price changes, effectively confirming the stochastic drift evident in Figure 1.

All dummies could be deleted, and the highest R2 was obtained when explaining (av-

erage) price changes as the result of a change in the state. See Table 9.7 For the Tree,

the effect of a change in state from low to high is a significant $0.19 (p < 0.05). The

effect of a change in state on the Bond price remains insignificant, however (p > 0.05).

The autocorrelations of the error terms are now acceptable (marginally above their

standard errors).

7We deleted observations that straddled two replications. Hence, the results in Table 9 are solely based

on intra-replication price behavior. The regression does not include a dummy; average price changes are

insignificantly different from zero.
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Table 8: OLS regression of period-average transaction price levels on several explanatory

variables, including state dummy. (∗ = significant at p = 0.05; DW = Durbin-Watson

statistic of time dependence of the error term.)

Explanatory Tree Price Bond Price

Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Session Dummies:

1 2.69∗ (2.53, 2.84) 3.17∗ (2.93, 3.41)

2 2.69∗ (2.51, 2.87) 3.31∗ (3.04, 3.59)

3 1.91∗ (1.75, 2.08) 2.49∗ (2.23, 2.74)

4 2.67∗ (2.50, 2.84) 2.92∗ (2.66, 3.18)

5 2.47∗ (2.27, 2.67) 2.86∗ (2.56, 3.17)

6 2.23∗ (2.05, 2.40) 3.42∗ (3.16, 3.69)

Period Number 0.06∗ (0.03, 0.08) 0.06∗ (0.01, 0.10)

State Dummy (High=1) 0.24∗ (0.12, 0.35) 0.11 (-0.07, 0.29)

Initiate Termination -0.07 (-0.28, 0.14) -0.01 (-0.33, 0.31)

Dummy Even Periods -0.00 (-0.11, 0.11) -0.11 (-0.28, 0.06)

R2 0.71 0.52

DW 1.05∗ 0.88∗

Table 9: OLS regression of changes in period-average transaction prices. (∗ = significant at

p = 0.05.)

Explanatory Tree Price Change Bond Price Change

Variables Estim. (95% Conf. Int.) Estim. (95% Conf. Int.)

Change in State Dummy

(None=0; High-to-Low=-1, 0.19∗ (0.08, 0.29) 0.10 (-0.03, 0.23)

Low-to-High=+1)

R2 0.18 0.04

Autocor. (s.e.=0.13) 0.18 -0.19
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Figure 2: Time series of period-average Tree (red line) and Bond (blue line) transaction

price changes. Changes are concatenated across all replications and all sesions, but exclude

inter-replication observations. State is indicated by black solid line on top; state = 2 when

“high” (tree dividend equals $1); state = 0 when “low” (tree dividend equals $0).
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At 18%, the explained variance of Tree price changes (R2) is high. In theory, one

should be able to explain 100% of price variability. But prices are noisy, as Figure 1

revealed. The regression in first differences shows that there fundamental economic

forces are behind price changes, at least as far as the Tree is concerned, as predicted

by the Lucas model.

Figure 2 displays the evolution of price changes, after chronologically concatenating

all replications for all sessions. Like in the data underlying the regression in Table 9,

the plot only shows intra-replication price changes. The period state (=1 if low; 2 if

high) is plotted on top.

Consumption Across States. Prediction 4 of the Lucas model states that agents
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Table 10: Average consumption (end-of-period cash holdings) as a function of participant

Type and State. Autarky numbers in parentheses.

Consumption ($) Consumption Ratio

Type High Low High Low

I 14.93 (19.75) 7.64 (4.69) 1.01 (0.52) 1.62 (3.26)

II 15.07 (10.25) 12.36 (15.31)

of both types should trade to holdings that generate high consumption in high states,

and low consumption in low states. Assuming identical preferences, they should con-

sume a fixed fraction of total period cash flows, or the ratio of Type I to Type II

consumption should be equal in both states. The left-hand panel of Table 10 displays

the average amount of cash per type in high vs. low states.8 In parentheses, we indicate

consumption levels assuming that agents do not trade (i.e., under an autarky). The

statistics in the table confirm that consumption of both types increases with dividend

levels. The result is economically significant because consumption is anti-correlated

under autarky. This is strong evidence in favor of Lucas’ model.

The right panel of Table 10 displays Type II’s consumption as a ratio of Type I’s

consumption. The difference is substantially reduced from what would obtain under

autarky (which is displayed in parentheses). Again, this supports the Lucas model,

though the theory would want the consumption ratios to be exactly equal across states.

There are significant individual differences however, reminiscent of the huge cross-

sectional variation in choices in static asset pricing experiments that led to the devel-

opment of the ε-CAPM (Bossaerts et al., 2007).

Consumption Across Odd And Even Periods. Prediction 4 states that sub-

jects should be able to perfectly offset income differences across odd and even periods.

Table 11 demonstrates that our subjects indeed managed to smooth consumption sub-

stantially; the outcomes are far more balanced than under autarky (in parentheses;

averaged across high and low states, excluding Periods 1 and 2).

Price Hedging. The above results suggest that our subjects (on average) managed

to move substantially towards equilibrium consumption patterns in the Lucas model.

However, they did not resort to price hedging (Prediction 6) as a means to ensure

those patterns. Table 12 displays average asset holdings across periods for Type I

8To compute these averages, we ignored Periods 1 and 2, to allow subjects time to trade from their initial

holdings to steady state positions.
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Table 11: Average consumption (end-of-period cash holdings) as a function of participant

and period Types.

Consumption ($)

Type Odd Even

I 7.69 (2.41) 13.91 (20.65)

II 14.72 (20) 11.74 (5)

Table 12: Average (End-Of-Period) Asset Holdings Of Type I Participants.

Period 1 2 3 4 5 6 7 8 9

Income ($) 0 15 0 15 0 15 0 15 0

Asset (Initial Holding):

Tree (10) 6.67 7.00 5.67 6.33 5.75 6.75 5.92 6.67 6.92

Bond (0) 0 1.08 0.33 1.25 0.50 1.60 0.92 2.58 2.25

Total (10) 6.67 8.08 6.00 7.58 6.25 8.35 6.84 9.25 9.17

subjects (who receive income in even periods). They are net sellers of assets in periods

of income shortfall (see “Total” row), just like the theoretical agents with logarithmic

utility (see Table 2). But unlike in the theory, subjects decrease Tree holdings in low-

income periods and increase them in high-income periods (compare to Table 2). As a

by-product, Type I subjects generate cash mostly through selling Trees as opposed to

exploiting the price differential between the Bond and the Tree.

Altogether, it appears that the findings from our experiments are in line with the

predictions of the Lucas model, with two exceptions: (i) the co-movement between

prices and economic fundamentals was too small; (ii) subjects did not engage in price

hedging.

These two anomalies should be related. Subjects may not expect prices to change

with economic fundamentals, and hence, they rationally perceive no need to hedge

price risk. These beliefs are generally not falsified because of the short duration of a

typical replication, despite the fact that the beliefs are actually wrong, at least as far

as the Tree is concerned – but this we ourselves discovered only after pooling the price

behavior from all sessions.
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5 Discussion

The experiments demonstrate that our design “delivers” in the sense that it generates

meaningful results in line with the Lucas model – with the exception of the much

reduced co-movement of prices with economic fundamentals (given the significant dif-

ferences of prices cross-sectionally) and, consistent with it, the absence of concern for

price hedging among participants.

Here, we discuss potential causes of these two anomalies.

Starting with Epstein and Zin (1991), it has become standard in research on the

Lucas model with historical field data to use time-nonseparable preferences. We refrain

from following this tradition because in the context of our experimental design, time

separability is a natural consequence of expected utility. To justify time nonseparable

preferences, one would have to reject expected utility altogether. In field research, time

non-separability was introduced not because researchers gave up on expected utility,

but because they wanted a convenient framework in which to disentangle risk aversion

and consumption smoothing.

Instead, we think that it would be more fruitful to start studying the effect of small

deviations from perfect foresight. The Lucas model in general, and price hedging in

particular, hinge on perfect foresight (of the equilibrium relationship between prices and

dividends). One wonders what the effect is of small deviations from perfect foresight

on equilibrium prices and allocations.

The absence of demand for (price) hedging may indeed reflect subjects’ belief that

prices do not co-move with economic fundamentals; essentially, in accordance with

the version of the EMH that the Lucas model discredits, prices are expected to be a

martingale. The belief is wrong, as we pointed out, but not readily falsifiable within the

short time of an experiment, and even after 80 observations (80 periods), not falsifiable

for Bond prices. That is, the belief is a good working hypothesis.

We can start from an extreme. Imagine that agents always expect prices to stay at

the current level, irrespective of future economic fundamentals. Agents correctly solve

their dynamic investment-consumption problem (given their beliefs), send correspond-

ing demands to markets, where prices are such that there is equilibrium each period.

How would this equilibrium evolve over time? Simulations which we performed so far

have revealed that prices will still co-move with dividends, albeit in a much reduced

way.

The equilibrium we sketched above is obviously not a Radner equilibrium, because

expectations of the mapping from states (dividend levels) to prices will be incorrect.
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An interesting question is whether we can transform it into a proper Radner equilib-

rium through the introduction of noise: agents posit that prices do not only depend on

dividends, but also on some exogenous “noise.” Can we identify types of noise which

generate Radner equilibria with significant equity premia but minimal time series de-

pendence, and hence, minimal demand for hedging?

One could envisage that the proposed “noise” reflects doubts in the mind of the

agents about the veracity of the posited mapping between states and prices, in anal-

ogy with the “noise” added to conjectures of strategic behavior of other players in

the quantal response equilibrium (McKelvey and Palfrey, 1995; Mckelvey and Palfrey,

1998).

We leave this possiblity for future research.

6 Conclusion

Over the last thirty years, the Lucas model has become the core theoretical model

through which scholars of macroeconomics and finance view the real world, advise

investments in general and retirement savings in particular, prescribe economic and

financial policy and induce confidence in financial markets. Despite this, little is known

about the true relevance of the Lucas model. The recent turmoil in financial markets

and the effects it had on the real economy has severely shaken the belief that the Lucas

model has anything to say about financial markets. Calls are being made to return

to pre-Lucas macroeconomics, based on reduced-form Keynesian thinking. This paper

was prompted by the belief that proper understanding of whether the Lucas model (and

the Neoclassical thinking underlying it) is or is not appropriate would be enormously

advanced if we could see whether the model did or did not work in the laboratory.

Of course, it is a long way from the laboratory to the real world, but it should be

kept in mind that no one has ever seen convincing evidence of the Lucas model “at

work” – just as no one had seen convincing evidence of another key model of finance

(the Capital Asset Pricing Model or CAPM) at work until the authors (and their

collaborators) generated this evidence in the laboratory (Asparouhova et al., 2003;

Bossaerts and Plott, 2004; Bossaerts et al., 2007). The research provides absolutely

crucial – albeit modest – evidence concerning the scientific validity of the core asset

pricing model underlying formal macroeconomic and financial thinking.

Specifically, despite their complexity, our experimental financial markets exhibited

many features that are characteristic of the Lucas model, such as the co-existence of a

significant equity premium and (albeit reduced) co-movement of prices and economic
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fundamentals. Consistent with the model, the co-movement increased with the magni-

tude of the equity premium. And subjects managed to smooth consumption over time.

Smoothing was not perfect, but sufficient for consumption to become positively corre-

lated across subject types, in sharp contrast with consumption under autarky, which

was negatively correlated. But we did not observe demand for price hedging, perhaps

because subjects wrongly believed that prices were a martingale. Still, such beliefs

were not irrational: within the time frame of a single session, there was insufficient

evidence to the contrary.

But the overall evidence against a martingale was strong, at least for price series

for the risky asset (the Tree). As such, our data reject the EMH to the extent that

it requires prices to be a martingale. Prices were predictable. After a ‘good’ period

(the dividend on the Tree is high), Tree prices were expected to decrease 3.3% on

average, while after a ‘bad’ period, they were expected to increase 3.6%. This price

predictability translates into strongly time-varying expected returns. After a ‘good’

period the expected return on the Tree equaled only 14%. After a ‘bad’ period, it was

as high as 22%.9 Again, the Lucas model is consistent with this price predictability

and the resulting time-variability in expected returns.

9These calculations are based on the results displayed in Tables 9 (time series model) and 6 (average

prices). E.g., when the state is ‘high’ (i.e., the period is ‘good’), then average prices equal 2.91 (Table 6).

The Tree pays a dividend on $1 with 50% chance. The state changes to ‘low’ with 50% chance, at which

point the price is expected to drop $0.19 according to the model of Table 9. So, the expected return equals

0.50 ∗ 1/2.91− 0.50 ∗ 0.19/2.91, or 14%.
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Appendix: Instructions (Type I Only)
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PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

Dividends       
Tree $1*10=10 $0*10=0 $0*10=0 $1*10=10 $0*10=0 $1*10=10 

Bond $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 $0.5*0=0 
Income 0 15 0 15 0 15 
Initial Cash $10  

(=10+0+0) 
$15  
(=0+0+15) 

$0  
(=0+0+0) 

$25  
(=10+0+15) 

$0 
(=0+0+0) 

$25  
(=10+0+15) 

Trade       
Tree 0 0 0 0 0 0 

Bond 0 0 0 0 0 0 
Cash Change $0 $0 $0 $0 $0 $0 
Final 
Holdings 

      

Tree 10 10 10 10 10 10 
Bond 0 0 0 0 0 0 

CASH $ 10.00 $ 15.00 $ 0.00 $ 25.00 $ 0.00 $ 25.00 
 
!

!"#$%&)(&

 
PERIOD 1 2 3 4 5 6 
State H L L H L H 
Initial 
Holdings 

      

Tree 10 5 6 4 5 3 
Bond 0 5 6 4 6 4 

Dividends       
Tree $1*10=10 $0*5=0 $0*6=0 $1*4=4 $0*5=0 $1*3=3 

Bond $0.5*0=0 $0.5*5=2.5 $0.5*6=3 $0.5*4=2 $0.5*6=3 $0.5*4=2 
Income $0 $15 $0 $15 $0 $15 
Initial Cash $10  

(=10+0+0) 
$17.5  
(=0+2.5+15) 

$3 
(=0+3+0) 

$21  
(=4+2+15) 

$3 
(=0+3+0) 

$20 
(=3+2+15) 

Trade       
Tree -5 +1 -2 +1 -2 +1 

Bond +5 +1 -2 +2 -2 +1 
Cash Change $0 -$5 +$10 -$7.5 +$10 -$5 
Final 
Holdings 

      

Tree 5 6 4 5 3 4 
Bond 5 6 4 6 4 5 

CASH $ 10.00 $ 12.50 $ 13.00 $ 13.50 $ 13.00 $ 15.00 
!
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