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ABSTRACT

Using data generated from laboratory experiments, we test and compare the empirical

accuracy of two models that focus on judgment errors associated with processing informa-

tion from random sequences. We test for regime-shifting beliefs of the type theorized in

Barberis, Shleifer, and Vishny (1998) (BSV) and for beliefs in the “law of small numbers”

as modeled in Rabin (2002). In our experiments, we show subjects randomly generated

sequences of binary outcomes and ask them to provide probability assessments of the di-

rection of the next outcome. Inconsistent with regime-shifting beliefs, we find that subjects

are not more likely to predict that the current streak will continue the longer the streak.

Instead, consistent with Rabin, subjects are more likely to expect a reversal following short

streaks and continuation after long streaks. Results of a “test of fit” analysis based on

structural estimation of each model also favor the model in Rabin. To provide more insight

on Rabin, we use an additional experimental treatment to show that as the perception of

the randomness of the outcome-generating process increases, subjects are more likely to

predict reversals of current streaks.
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I. Introduction

Experimental research by cognitive psychologists provides a multiplicity of evidence showing

that cognitive biases have profound effects on belief formation and revision. Translating the

wide variety of documented biases into a unified tractable framework for understanding belief

revision has provided an important challenge for decision theorists. One promising approach

to synthesizing this evidence is “quasi-Bayesian” where decision makers, because of one or

more of the documented cognitive biases, have a mistaken view of the world, but otherwise

act as Bayesians in updating beliefs. An important property of this class of models is that

rational decision making obtains in the limit as the parameters representing the cognitive biases

approach zero, or as the biases disappear. In this paper, we experimentally test and compare

the empirical accuracy of two leading quasi-Bayesian models that focus on judgment errors

associated with processing information from randomly generated data.

Barberis, Shleifer, and Vishny (1998) (hereafter BSV) develops a model motivated by two

well-documented systematic biases that arise when people form beliefs: conservatism and rep-

resentativeness.1 These biases are captured in a regime-shifting framework where the (binary)

outcome process follows a random walk, but the decision maker (an investor in this case) in-

stead holds the flawed belief that the process switches between a “reversal” regime (in which

consecutive outcomes tend to reverse themselves in sign) and a “continuation” regime (in

which consecutive outcomes are more likely to be of the same sign). A key implication of the

BSV model that we investigate in our empirical tests is that the longer the observed streak

of consecutive like outcomes, the higher the probability that the decision maker assigns to

the next outcome continuing the streak, i.e., the probability of a streak continuing increases

monotonically with streak length.2

1Conservatism refers to the tendency to underweight new evidence relative to prior beliefs and is suggestive
of underreaction. Representativeness bias comes in many forms. Relevant here is the belief that even small
samples will reflect the properties of the parent population. This can lead to overinference from small samples
and is suggestive of overreaction.

2As described in BSV (1998, p. 310), “when a positive surprise is followed by another positive surprise, the
investor raises the likelihood he is in the trending regime, whereas when a positive surprise is followed by a
negative surprise, the investor raises the probability he is in the mean-reverting regime.”
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Rabin (2002) provides a model that is based on a form of representativeness bias that

Tversky and Kahneman (1971) refer to as the “law of small numbers.” The model assumes a

random outcome-generating process and depicts the flaw in reasoning as the decision maker’s

false belief that outcomes are, instead, generated by draws from an “urn” of size N without

replacement. Two counteracting effects arise when individuals do not know and, thus, must

infer the the urn rate. The first effect is the “gambler’s fallacy”–the erroneous belief that

future outcomes will “balance” the observed historical sequence towards the presumed rate.3

The second effect is that, after observing a streak of like outcomes, beliefs about the rate are

biased towards the more frequently observed outcome leading to the false expectation that the

streak will continue, something commonly referred to as the “hot hand effect.”4 The interaction

of these two effects results in an overestimate of the probability of a short streak reversing (as

a short streak has a minimal effect on the rate prior such that the gambler’s fallacy prevails)

and that of a long streak continuing (as a long streak leads to an excessive weight on the

rate inferred thereby swamping the gambler’s fallacy effect). Thus, in contrast to the BSV

model, where the decision maker monotonically increases the probability of continuation as

streak length increases, the relation between streak length and expectation of continuation in

Rabin is non-monotonic, i.e., in Rabin, the decision maker initially decreases the probability of

continuation and then switches to increasing the probability of continuation at longer streak

lengths.

Our empirical investigation of the BSV and Rabin models is based on data from laboratory

experiments. In the experiments, subjects are presented with randomly generated sequences

of eight binary (UP or DOWN) outcomes and then asked to make a probability assessment

on the likelihood that the next, ninth, outcome will be UP. We use an incentive compatible

mechanism to elicit truthful revelation of subjective probabilities. Subjects are presented with
3Gambler’s fallacy is sometimes referred to as a manifestation of the “law of small numbers” where individuals

believe that even small samples should be representative of the population as a whole; a classic example of
this bias is when, after a string of reds at the roulette wheel, bettors expect that a “black is due” in order
to balance out the string of reds. A number of studies including those of Tversky and Kahneman (1971),
Burns and Corpus (2004), Bar-Hillel and Wagenaar (1991), Rapoport and Budescu (1992), Clotfelter and Cook
(1993), Terrell (1994), and Croson and Sundali (2005) present experimental evidence on gambler’s fallacy. For
a comprehensive review of the literature, see Rabin (2002).

4In comparing hot hand and gambler’s fallacy effects Croson and Sundali (2005) note “The gambler’s fallacy
is a belief in negative autocorrelation of a non-autocorrelated random sequence of outcomes. In contrast, the
hot hand is a belief in positive autocorrelation of a non-autocorrelated random sequence of outcomes.”
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100 such eight-outcome sequences and, thus, are asked to make 100 probability assessments.

These probability assessments form the basis for all of our empirical analyses.

In our first set of tests, we focus on the overall ability of each model to explain the data.

In this analysis, we use the experimental data to structurally estimate the parameters of each

model for each subject. We then test for goodness of fit by computing, and then comparing,

the root mean squared error (RMSE) under Rabin, BSV, and two benchmark models. The first

benchmark model is the “Correct” model (that always predicts 50% as the likelihood that the

next outcome is UP); the second benchmark model is the Bayesian model, in which the decision

maker is learning the urn rate but knows that the drawing is made with replacement. We find

that both of the behavioral models provide a significantly better fit than the benchmarks, and

that the Rabin model provides a significantly better fit than the BSV model. Relative to the

Correct model, the Rabin model provides a 14% improvement in fit as compared to only a

6.9% improvement provided by the BSV model. Of the 14% improvement in the Rabin model

performance, 6.6% is due to the gambler’s fallacy effect and 7.4% is due to the rational learning

of the urn rate, a result that we obtain by comparing the fit of the Rabin model to that of the

Bayesian benchmark model.

In order to provide additional evidence and some insight into why the Rabin model provides

a better fit of the data, we conduct a simulation analysis to examine how the two models com-

pare in explaining the response of our subjects to streaks in the data. (For this analysis, streaks

are measured as the number of like outcomes leading up to the outcome that the subjects are

making predictions on. Streaks can range in length from one to eight.) Specifically, for this

analysis, we use each subject’s parameter estimates obtained from our structural estimations

to simulate (for that subject) the predictions of decision makers that act according to each

model. We then compare the simulated predictions from each model to the actual predictions

made by our experimental subjects. The results of this analysis favor the Rabin model; i.e., for

all streak lengths, the average simulated predictions of the Rabin decision maker are closer (in

terms of sign and magnitude) to the actual predictions of our experimental subjects (which are

non-monotonic across streak length.) In contrast, the average simulated BSV (and Bayesian)

decision makers’ predictions are strictly increasing in streak length.
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To more formally characterize the non-monotonic relation between streak length and the

subjects’ probability assessments, we conduct a regression analysis where we divide the ob-

served sequences into those that contain “short” and “long” streaks and include both in a

piece-wise linear (spline) regression on the subjects’ probability assessments. In addition to

the actual experimental data, we perform the above analysis on the simulated BSV, Rabin,

and Bayesian data. The results of this analysis are inconsistent with the BSV prediction that

individuals are more likely to believe they are in the continuation regime the longer the ob-

served streak; i.e., we find that subjects are not more likely to predict that the current streak

will continue the longer the streak.5 The results are also inconsistent with the Bayesian model

prediction that the subjects’ probability assessments are strictly increasing in streak length.

Instead, consistent with Rabin, when streak length is short (less than or equal to 3) subjects

are more likely to expect a reversal the longer the streak. Also, consistent with Rabin, we find

that the above effect reverses for longer streaks, i.e., conditional on streak length exceeding 3,

subjects are more likely to expect that the streak will continue the longer the streak. Thus, in

the aggregate, as allowed by the Rabin model but not by either the BSV or the Bayesian model,

the effect of gambler’s fallacy strengthens initially as streak length increases and weakens as

the streak becomes longer.

Finally, we also consider an alternative experimental treatment that differs only in that

the subjects are told that the underlying process is a random walk as generated by flips of

a fair coin. Burns and Corpus (2004) show that subjects are more likely to predict reversals

of streaks as their perception of the randomness of the outcome-generating process increases.

In the context of Rabin, increasing the perception of randomness increases the impact of the

gambler’s fallacy bias and decreases the impact of the hot hand effect. Comparing the results

from the two treatments, we find evidence consistent with this prediction.

The two treatments, because of their differing learning environments, also allow us to ad-

dress the Brav and Heaton (2002) argument that it is difficult, if not impossible, to distinguish

between “behavioral” models that rely on individual irrationality and “rational structural un-
5Ours is not the first study to empirically challenge the assumptions underlying the BSV model. Durham,

Hertzel and Martin (2005) provide contradictory evidence from the football betting market (that we discuss
later in the paper.) Massey and Wu (2005) present a model and experimental evidence suggesting that the way
in which agents are quasi-Bayesian is different than that assumed in BSV.
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certainty” models, where individuals make decisions rationally, but take time to learn about the

structure of the underlying economic environment. In our context, the Brav and Heaton chal-

lenge arises from the fact that although a rational decision maker would eventually learn that

draws from the urn are made with replacement, his decision-making behavior, while learning,

could be indistinguishable from that of a decision maker suffering from the gambler’s fallacy

bias. We find that the magnitude of the gambler’s fallacy effect is the same across treatments,

which is inconsistent with the hypothesis that what we observe is due to subjects’ learning.

Overall, we believe that the evidence we document suggests that the underlying structure of

the Rabin model captures important features of decision-making found in the data.

The remainder of the paper proceeds as follows. Section II gives a detailed description of

the models of BSV and Rabin. Section III provides our experimental design and the description

of the experimental sessions. Our empirical methodology and the statistical results follow in

Section IV. Section V concludes with a brief discussion and some thoughts regarding future

research.

II. Theoretical Framework and Empirical Implications

The models in Rabin (2002) and Barberis, Shleifer, and Vishny (1998) are motivated by the

question of how people with certain cognitive biases think about sequences of random outcomes.

The decision makers in both models use the history of realizations of a binary random variable

to infer the distribution of this variable in the next period. The updating process is “quasi-

Bayesian” in that the decision makers use Bayes’ rule to update some of the model parameters

but are “stubborn” about others and as a result never learn the true data-generating process.

The models differ with respect to the nature of the underlying cognitive biases and on how

these affect the decision making process. In our empirical analysis, we structurally estimate

the models using our experimental data and compare goodness of fit. Accordingly, we provide

details of each model below.
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A. BSV model

Motivated by evidence of underreaction and overreaction in financial markets, Barberis, Shleifer,

and Vishny (1998) provide a model of investor behavior that is consistent with the financial

market findings. Although the BSV theory is cast up as domain-specific to financial markets,

the underlying model of decision-making, which draws on well-documented evidence of psycho-

logical biases, is potentially applicable in other settings where decision makers are confronted

with random data. Specifically, Barberis, Shleifer, and Vishny (1998) model the psychological

effects of conservatism and representativeness bias in a regime-shifting framework where the

true data-generating process is random, but the decision maker holds the flawed belief that the

world shifts between two states (regimes), each of which has a different model governing the

data-generating process. The governing models in each state differ only with respect to the

probability (π) that the next outcome will be the same as the previous one. In Model 1, this

probability, πL, is low (less than 0.5) and, thus, outcomes in this regime are mean-reverting.

The actions of the decision maker in this state are consistent with conservatism bias, i.e.,

expecting a reversal, the DM underreacts to the most recent observation. In Model 2, the

probability of continuation, πH , is high (greater than 0.5) and, thus, outcomes in this regime

trend. A DM in this world behaves in a manner consistent with representativeness bias; i.e.,

expecting continuation, the DM overreacts to the most recent observation.

Having observed a sequence of realized outcomes, the BSV decision maker sees her task as

attempting to determine which of the two states is governing the outcome-generating process.

A crucial assumption of the model is that the DM is dogmatic about the parameters πL and

πH as well as the parameters (λ1 and λ2) that determine the probabilities of switching from the

reversal to the continuation regime, and vice versa. (If, instead, the DM were to update these

probabilities, she would ultimately learn the true data-generating process.) As a consequence,

the longer the streak of like outcomes that the DM observes, the more likely she believes she

is in the continuation regime and the higher the probability she assigns to the next outcome

continuing the streak, i.e. this probability is monotonically increasing in streak length. The

latter is generally not true for the Rabin model, as we describe below.
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B. Rabin Model

The Rabin (2002) model of the “law of small numbers” assumes that people mistakenly believe

that the binary outcomes in random sequences are generated from an “urn” of size N without

replacement, although draws are actually made with replacement, i.e., the data-generating

process is a random walk. To reconcile his belief that the urn is finite with observing very long

sequences, the decision maker also believes that the urn is renewed every K draws (K < N).

The Rabin DM (called Freddy) is dogmatic about the size of the urn and the frequency with

which the urn is renewed. If he were to use the history of realizations to update K and N,

Freddy would ultimately correctly infer that the urn is either infinitely large or that it is

renewed every period (i.e., the draws are made with replacement), both leading to correct

inference about the distribution of the random variable. When Freddy is uncertain about the

urn rate, we use two parameters, r and q, to describe his prior about the urn rate distribution.

Apart from being “stubborn” about N and K, Freddy uses Bayes’ rule for updating his priors

on the urn rate.

One implication of the Rabin model is that when Freddy knows that the urn rate is 50% he

succumbs to the gambler’s fallacy, i.e., after observing an unbalanced sequence he believes it is

more likely that the next outcome will “balance” the sequence toward the rate of 50%. When

Freddy does not know the urn rate and makes inferences about the rate from past observations,

there are two counteracting effects. The first effect is that given a rate, he predicts outcomes

in the direction that would balance the observed sequence towards that rate, i.e. the standard

gambler’s fallacy effect. The second effect is that after observing a disproportionate number

of like outcomes, Freddy infers a rate that is biased towards the more frequent outcome.

Generally, the interaction of these two effects leads to a non-monotonic relationship between

the length of the streak of like outcomes that Freddy observes and the probability that he

assigns to the next outcome continuing the streak.
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III. Experimental Setup

Our experimental design is motivated by a recent study by Bloomfield and Hales (2002) that

presents evidence consistent with regime-shifting beliefs of the type envisioned by BSV. In their

laboratory experiments, subjects observe eight separate graphical representations of historical

sequences (and their mirror images) of eight binary outcomes (UP or DOWN). Participants are

told that the sequences are generated from a random walk and a pricing mechanism is used to

elicit their expectations about the direction of the ninth outcome in the sequence. Consistent

with BSV, Bloomfield and Hales find that subjects consistently rely on the prevalence of past

performance reversals when assessing the likelihood of future reversals. More specifically, the

subjects showed “a strong tendency to predict reversion after seeing many reversals and to

predict trending after seeing few recent reversals.” (p.412.)

We argue that the Bloomfield and Hales (2002) experimental design cannot provide a

definitive test of BSV because the set of sequences shown to their subjects are not consistent

with what would be observed under a random walk process, but instead are more consistent

with what would be expected if the true underlying process was of a regime-shifting type.

A simple chi-square goodness of fit test based on the frequency of reversals strongly rejects

that the set of sequences used in their experiment were drawn from a random walk process.

Furthermore, consistent with an underlying regime-shifting process, the sequences have far too

many observations in the tails of the distribution of reversal rates. Although there may be

sound methodological reasons for employing extreme sequences, one unintended consequence

is that it results in an experiment that is unable to distinguish whether subjects rationally

conclude that the underlying process is of a regime-shifting type or whether the subjects’

belief in regime-shifting arises from behavioral biases as suggested by BSV.

We, therefore, modify the Bloomfield and Hales methodology by presenting our subjects

with eight-outcome sequences that are each drawn independently from a (discrete) random

walk distribution. Then, as in Bloomfield and Hales, we ask participants to report their
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probability assessments that the next (ninth) outcome will be UP.6 We elicit the subjects’

probability assessments using an incentive compatible mechanism; namely the variant of the

quadratic scoring rule described in Offerman and Sonnemans (2004).7 Once a probability is

reported, the ninth (randomly generated) outcome of the corresponding sequence is revealed,

the payoff for that “round” is realized, and a new sequence is shown. Subjects are presented

with 100 sequences and, thus, are asked to make 100 separate probability assessments. We vary

the order and the direction in which the patterns are presented to subjects as follows. There

are four groups of subjects in each session. Group 1 observes the 100 randomly generated

sequences. Group 2 observes the same sequences, however, each UP (DOWN) outcome is

replaced by a DOWN (UP) outcome. Group 3 observes Group 1’s sequences but in reverse

order. Group 4 observes Group 2’s sequences but in reverse order.

We further modify the Bloomfield and Hales setup by not telling the subjects that outcomes

are generated by a random walk process. Our main treatment, Treatment 1, is designed to

satisfy the information condition of both BSV and Rabin that the DM is not informed about the

outcome-generating process. In this treatment, we inform the subjects that they are observing

sequences of performance surprises (that can be good or bad, as represented by UP or DOWN

outcomes) of the same firm.8 The information on how the sequences are generated is, however,

withheld from the subjects.9

As discussed in Section 2, Rabin makes divergent predictions based on whether or not the

DM knows the data-generating mechanism. Consequently, to further investigate the model,
6A snapshot of the experimental software displaying a single eight-outcome sequence is presented in Figure

1. The software eTradeLab used in our experiments is web-based and the graphical application we use was
designed specifically for our experiment.

7Offerman and Sonnemans (2001) study the properties of this particular quadratic scoring rule and find that
“the reported mean absolute difference between true subjective and reported probabilities is for most subjects
smaller than a few percentage points. Deviations from truth telling are not systematic. The scoring rule does
not bias the results.”

8Although we propose that BSV is a more generalizable “domain-general” model (the Rabin model is
“domain-general” by construct), an interesting question is the extent to which the economic setting affects
the subjects’ behavior. In the context of our study, a potential future experiment might explore whether chang-
ing from “up/down” stimuli to any other binary stimuli (for example, stock returns) changes the inferences that
subjects draw.

9The instructions for this treatment with the exact language used to describe the data-generating process
to the participants are provided in the E-companion for this paper on the Managements Science web page. It
can also be found at http://leef.business.utah.edu/ms2/frames ms.html. The Excel macro used to explain the
quadratic scoring rule can be found at http://leef.business.utah.edu/ms2/ProbabilityAssessment.xls.
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we employ an additional treatment that differs from Treatment 1 in that the subjects are told

what the outcome-generating process is. In Treatment 2, we inform the subjects that they are

observing outcomes generated by the flips of a fair coin (with no reference to firm performance

surprises).10

A total of 92 participants took part in the experimental sessions, with 46 participants in

each treatment. The sessions were conducted in the Fall of 2007. Approximately half of the

participants in each treatment were from the University of Utah; the other half were from

Arizona State University. Each experimental session lasted about one hour. The average

payoff per subject was $24. Upon arrival at the laboratory, subjects were seated in front of

computer terminals. They were instructed to go to a web page that contained the experimental

instructions and the links to the practice and the actual sessions. One of the experimenters

read aloud the instructions. The subjects were advised that they could ask questions, but that

they should do so privately (by raising their hand and having one of the experimenters come to

them to answer their question(s)). An Excel macro was designed to explain that the expected

payoff would be maximized by truthful reporting of subjective probability assessments. Using

the macro, the subjects could explore the quadratic scoring rule that determined their payoffs.

Each subject could take as long as s/he needed to complete the training. To ensure that

subjects understood the instructions they were asked to fill out a short questionnaire and

could not proceed to the practice rounds until they answered the questions correctly. In the

practice rounds, the subjects observed two sequences (same for all subjects), made predictions,

observed the payoffs, and, in general, familiarized themselves with the experimental software.

After completing the practice sessions, subjects completed the actual experiment at their own

pace.

IV. Empirical Analysis

The basic unit of analysis in our empirical investigation is a subject’s probability assessment,

after observing a sequence of eight outcomes, that the next (ninth) outcome is UP. Whether
10The URL for Treatment 2 is http://leef.business.utah.edu/ms4/frames ms.html.
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this assessment translates into an expectation of continuation or reversal depends, of course, on

the last (eighth) outcome of the observed sequence. To account for this, we use the Bloomfield

and Hales (2002) “signed reaction measure.” To calculate this measure, we first subtract 0.5

from each of the participant’s 100 probability assessments; this “deviation” ranges between

-0.5 and 0.5, with positive numbers indicating that the subject places a higher likelihood on

the next outcome being UP, and negative numbers indicating that the subject places a higher

likelihood on the next outcome being DOWN. To obtain the signed reaction measures, we then

multiply this deviation by -1 if the last outcome is DOWN. Thus, we obtain a measure where

expectations of continuations are positive and expectations of reversals are negative.

Table I presents summary information (mean, median, and interquartile range) for our

sample of 9200 probability assessments (4600 each for Treatments 1 and 2) and for the as-

sociated sample of signed reaction measures. The results for both treatments show a slight

bias in predicting an UP movement. For Treatment 1 the median (mean) reported probability

of an UP movement is 0.50 (0.52), with an interquartile range of [0.40, 0.65]. The results for

Treatment 2 are nearly identical with a median (mean) reported probability of 0.5 (0.52) and

an interquartile range of [0.40, 0.70]. (We conjecture that the positive connotation of the UP

stimulus may have caused subjects to place higher subjective probability on this event.)

In both treatments the sample median (mean) signed reaction measure is 0 (0.006). The in-

terquartile ranges are [−0.1, 0.13] and [−0.14, 0.15] for Treatments 1 and 2 respectively. These

results suggest that unconditionally there is no evident tendency towards continuation or rever-

sal in subjects’ behavior. We note that the ability of the BSV model to explain underreaction

to recent performance relies on an assumption that the DM’s overall tendency is to to predict

reversals. However, as noted in Section III, we do not impose this condition in our estimation,

and as such this finding has no bearing on the goodness of fit tests we perform on the BSV

model.

In the next subsection we use the raw probability assessments to structurally estimate the

models and perform a goodness of fit test of their relative performance. We then provide

additional descriptive analysis by reporting the summary information presented in Table I for

the eight subsamples of sequences defined by the lengths of the sequence-ending streaks. Guided
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by the observations from this simple analysis, we then use the signed reaction measures in a

regression analysis that tests the differing implications of the models regarding how individuals

respond to streaks in performance.

A. BSV vs. Rabin (Treatment 1)

A.1. Test of Fit Analysis

We begin our analysis of the experimental data by structurally estimating the parameters of

the BSV and Rabin models. This analysis provides a direct test of the ability of the two models

to describe the data. The parameters of both models are estimated at the subject level using a

standard non-linear least squares procedure.11 We compare the two models against each other

and against two benchmark models using root mean squared error (RMSE) as a measure of

goodness of fit.

Starting with BSV, for each subject (i), we estimate the four parameters of interest, namely,

πL,i (the probability of continuation in the reversal regime), πH,i (the probability of continu-

ation in the continuation regime), λ1,i (the probability that the regime switches from reversal

to continuation), and λ2,i (the probability that the regime switches from continuation to re-

versal). To deliver the desired empirical implications of short-run underreaction and long-run

overreaction, the BSV model imposes a constraint on the relationship between the above pa-

rameters (see Proposition 2 of Barberis, Shleifer, and Vishny (1998)). Since this constraint

only concerns the empirical implications of the model we do not impose it in our estimation.

The objective function in the minimization algorithm for BSV is

F (πL,i, πH,i, λ1,i, λ2,i) =
100∑
s=1

(P s
i − Pr(ys

9 = UP |ys
1, ..., y

s
8, πL,i, πH,i, λ1,i, λ2,i))2,

where P s
i is subject i’s reported probability of an UP outcome after seeing sequence s,

ys
j , j=1,...,8, are the observed eight outcomes in sequence s, and

11To implement the non-linear least squares estimation, we use a standard algorithm in Matlab, called “fmin-
con,” for finding the minimum of a constrained non-linear multivariable function.
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Pr(ys
9 = UP |ys

1, ..., y
s
8, πL,i, πH,i, λ1,i, λ2,i) is the conditional probability that a (BSV)

decision maker with parameters (πL,i, πH,i, λ1,i, λ2,i) assigns to the ninth outcome in sequence

s being UP. The formula for this posterior probability is provided in the Appendix.

For the Rabin model, for each subject, we estimate the urn size Ni, the renewal rate Ki,12

and two additional parameters qi and ri that characterize the subject’s prior about the possible

urn rates. We assume that the possible values of the urn rates are

{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}

and that the corresponding prior probabilities associated with each of these values are

Πi = {qi, qi, 2qi, 2qi, 1− 6qi − 6ri, 2ri, 2ri, ri, ri},

where qi, ri ≥ 0, qi + ri ≤ 1/6.13

The objective function for Rabin in the minimization algorithm is

G(Ni,Ki, qi, ri) =
100∑
s=1

(P s
i − Pr(ys

9 = UP |ys
1, ..., y

s
8, Ni,Ki, qi, ri))2,

where P s
i is subject i’s reported probability after sequence s,

ys
j , j=1,...,8, are the observed eight outcomes in sequence s, and

Pr(ys
9 = UP |ys

1, ..., y
s
8, Ni,Ki, qi, ri) is the conditional probability that a (Rabin) decision

maker with parameters (Ni,Ki, qi, ri) assigns to the ninth outcome in sequence s being UP.

The formula for this posterior probability is provided in the Appendix.

We compare the fit of the BSV and Rabin models against each other and against two

rational benchmarks. The first benchmark, which we refer to as the “Correct model,” is where
12As a robustness check, we repeat the estimation fixing Ki to be 9 for all i (results not reported). Excluding

the urn renewal parameter results in only a small loss in fit (the median RMSE decreases by less than 0.5%).
13The first sequence that subjects observe contains both UP and DOWN outcomes. Thus, subjects know that

the rate is not 0% or 100%. For robustness, we also estimated the symmetric prior of {ri, ri, qi, qi, 1− 4qi −
4ri, qi, qi, ri, ri}, where qi, ri ≥ 0, qi + ri ≤ 1/4. None of the results that we report below changes when this
prior parameterization is used.
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the DM always predicts 50% as the probability of the next outcome being UP. The second

benchmark is a fully Bayesian model where the DM learns the urn rate (using Bayes’ rule) but

does not suffer from the gambler’s fallacy bias. The Bayesian benchmark model is obtained as

a particular case of the Rabin model as the urn size approaches infinity or as the urn renewal

rate approaches one. For this benchmark, we estimate the parameters of the prior distribution

qi and ri fixing the values N=10,000 and K=1. We refer to this second benchmark model as

the “Bayesian model.”

The structural estimation results are reported in Table II. For each model, we report the

median and mean values of the estimated parameters across subjects and the resulting median

and mean values of the root mean squared error (RMSE). The results for the BSV and Rabin

models are reported in Panels A and B respectively. Panel C reports the results for the two

benchmark models.

For the BSV model, the median parameter estimates indicate that, within the continuation

regime, subjects place a relatively high probability on continuation (0.59). In contrast, within

the reversal regime the likelihood of a reversal (0.53) is only slightly greater than 0.5. However,

the likelihood of switching to the reversal regime is quite high (0.24) compared to the likelihood

of switching from the reversal regime to the continuation regime (0.01). The mean values of

the parameters yield similar inferences. With these parameter estimates, the BSV DM starts

by predicting reversals at short streaks and then, as the streak length increases, places higher

likelihood on continuation.

For the Rabin model, the median estimated urn size (N) is 20 (we do not report the mean

urn size because the estimate of N reaches its upper limit in the least squares procedure for

subjects who state a probability of 0.5 for all, or most, of the observed sequences), and the

median urn renewal rate (K) is 9. Taken together, these estimates of N and K indicate that

the median subject exhibits the gambler’s fallacy bias.

The estimates of the subjects’ prior distribution of urn rates provide evidence that the sub-

jects place some weight on the possibility that the urn rate is not equal to 50%. Specifically,

based on the individual estimates of q and r, the median subject believes that the prior proba-
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bility of a 50% urn rate is 0.81 (i.e, 0.81 = mediani(1−6qi−6ri), where i is the i− th subject,

i = 1, ..., 46). Consistent with the tendency to predict an UP movement as documented earlier

in Table I, subjects appear to place higher prior probabilities on urn rates above 50% compared

to urn rates below 50% (i.e., q < r, with both the paired Student’s t-test and the Wilcoxon

Signed Rank test rejecting the equality of the means and the medians of the distributions of

the two parameters).

Finally, the mean estimates for the fully Bayesian model also indicate that subjects place

some, albeit small, prior weight on urn rates other than 50%; the median weight placed on an

urn rate of 50% is equal to 0.93. Compared to the Rabin model, the relatively high estimate

that the median subject in the Bayesian model (which is nested in the Rabin model) places on

the urn rate of 50% is due to the inability of the model to capture the gambler’s fallacy effect

that our subjects apparently display. To compensate, the model limits the updating that the

decision maker has to do.14

Turning to the RMSE results, we first note that the Correct (random walk) model produces

a median (mean) RMSE of 0.2077 (0.1906), while the corresponding value for the Bayesian

benchmark is 0.1924 (0.1791). Both of the behavioral models improve the overall fit relative to

the random walk benchmark: the BSV model produces a 6.9% (7.7%) improvement whereas

the Rabin model produces an improvement of 14% (14.1%). By comparing the fit of the Rabin

model to that of the Bayesian benchmark, we find that 6.6% (8%), or roughly half of the

improvement relative to the random walk model, is due to the gambler’s fallacy bias while the

rest can be attributed to rational learning of the urn rate.

The Wilcoxon Signed Rank test (paired Student’s t-test) for equality of the medians

(means) of the RMSE distributions resulting from the above estimation indicates that the

RMSE for the Rabin model is significantly smaller than that of the BSV model with a p-value
14Although we do not report the results here, we structurally estimated several versions of the Mullainathan

(2002) model where the DM is rational in all other aspects but uses “coarse categories to make inferences,” i.e.,
after observing the past outcomes, instead of updating continuously using Bayes’ rule, the DM has to choose
only one rate from the small set of rates that he thinks are possible and base his decisions on that rate (for
example, one set of possible urn rates is {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}).
Given the set of rates the DM can choose from, the structural estimation focuses on the DM’s prior over those
rates. In search of a good fit of the data, we used several parameterizations of the DM’s prior. We also varied
the set of available urn rates, or “categories,” but the resulting RMSE’s were always larger than the RMSE of
the Rabin model.
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(two-tailed) of 0.0025 (0.009).15 Based on the test of fit analysis, we conclude that the Rabin

model is better able to explain the behavior of our subjects.

A.2. Streak Length Analysis

To offer some insight into why the Rabin model provides a better fit to the experimental

data, we investigate how our subjects’ responses to streaks of different length compare to the

responses predicted by the competing models. Our focus on streaks is driven by (i) the aim of

the two models to explain empirical regularities that directly relate to streaks in the data and

(ii) the differential predictions that the models make with regard to the DM’s behavior after

short streaks of like outcomes. In BSV, the DM increases the probability of the next outcome

continuing the streak the longer the observed streak, i.e. the probability of continuation is

monotonically increasing in streak length. In contrast, in the Rabin model the interaction of

the gambler’s fallacy bias and the urn-updating effect generally leads Freddy to exaggerate the

probability of a short streak reversing and of a long streak continuing. This difference in the

predictions of BSV and Rabin is highlighted in Rabin and Vayanos (2007) as follows: “Even in

settings where Freddy’s error patterns resemble those in BSV, there are important differences.

For example, within the set of short streaks, Freddy’s expectation of a reversal can increase

with streak length, while in BSV it unambiguously decreases.”

Consequently, the analysis in this section examines the relation between streak length and

the signed reaction measure of the subjects’ assessment of the likelihood of continuation, where

streak length is defined as the number of like outcomes leading up to the outcome that the

subjects are predicting (i.e., the “sequence-ending streak”). As in the previous section, we

compare the results of the Rabin and BSV models to the benchmark Bayesian model (we

exclude the Correct model in this section as it always predicts a signed reaction measure of 0

independent of the streak length).
15Both the parametric and the non-parametric tests indicate that the two quasi-Bayesian models have smaller

RMSE than either of the benchmarks. The corresponding p-values in those comparison tests for the Rabin
model are both smaller than 0.01. The paired Student’s t-test cannot reject equality of the mean RMSEs of
the BSV and the Bayesian model, with a p-value of 0.09. The Wilcoxon Signed Rank test rejects that the two
RMSE medians are equal in favor of the hypothesis that the BSV RMSE is lower, with p-value of 0.01.

16



Simulation Analysis To begin, we first investigate how the two models fare in explaining

the responses of our subjects to sequence-ending streaks. Specifically, we compare the relation

between the average signed reaction measure and streak length that we observe in our exper-

imental data to the relations obtained when we simulate the predictions of decision makers

that respectively act according to each model. The simulated predictions for each subject (ac-

cording to the BSV, Rabin, and Bayesian models) are derived using that subject’s estimated

parameters obtained from the previous structural estimation of each model. We then convert

the simulated predictions into simulated signed reaction measures in the same way as we do

for the actual predictions from the experimental data.

Table III reports the average signed reaction measure by streak length for the experimental

and simulated data. Panel A displays the results for the experimental data. The average signed

reaction measure is positive for streaks with length of one, indicating that subjects put slightly

more weight on continuation compared to reversal. In contrast, the average signed reaction

measure for streak lengths between two and four is negative and is increasing in absolute

magnitude with the length of the streak. This is consistent with the gambler’s fallacy bias.

For streak lengths between five and eight, the average signed reaction measure is positive,

indicating that subjects put more weight on continuation of long streaks. Figure 2(a) provides

a visual representation of the experimental data.

Panel B presents the Rabin simulation results. The simulated signed reaction measures

exhibit a pattern that is remarkably similar (both in terms of sign and magnitude) to the

experimental data. In the context of the Rabin model, the simulated results show that at

short streaks the gambler’s fallacy effect dominates, such that reversal is more likely than

continuation. Moreover, the probability of reversal increases as the streak length initially

increases. As the observed streak reaches a length of five, the rate-updating effect starts

dominating and continuation becomes more likely than reversal. Figure 2(b) displays the

graph corresponding to these results. The one notable difference between the simulated and

the actual data is observed at a steak length of one; the Rabin model cannot explain the

continuation observed in the experimental data.
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Panel C presents the results obtained from the BSV simulations. Figure 2(c) displays

the corresponding graph. As can easily be seen, the BSV model fares worse than the Rabin

model in capturing the observed pattern in the experimental data. While the BSV simulation

captures the switch from predicting reversal of short streaks to predicting continuation of long

streaks, it does not capture the gambler’s fallacy effect at short streaks that we observe in

the subject data. Instead, the average simulated signed reaction measures for the BSV model

are monotonically increasing in streak length. As the graph in Figure 2(a) clearly shows, the

empirical relation between streak length and the signed reaction measure for our experimental

subject is not monotonic.

The Rabin model nests the Bayesian model as a special case where the decision maker

knows that either the size of the urn is infinite or that it is renewed after each draw. A

decision maker acting according to the Bayesian model will always predict in favor of the

outcome that is of higher frequency in the observed data. As presented in Panel D of Table

III (and visually in Figure 2(d)), the simulated average signed reaction measure from the

Bayesian model displays monotonicity in the streak length, and no reversal at any streak

length. The failure of the Bayesian simulation to display non-monotonicity and reversal helps

to explain its inferior performance in the structural estimation comparisons, and its marginally

worse performance than the BSV model (which allows for predictions of reversals after short

streaks).

Regression Analysis In order to formally characterize the non-monotonic nature of the re-

lation between streak length and the signed reaction measure, we follow an approach similar to

Durham, Hertzel, and Martin (2005) and divide the observed sequences into those exhibiting

“short” (STREAK1) and “long” (STREAK2) streaks and investigate how the reaction mea-

sure is related to the observed streak length.16 In particular, if C is the cutoff point between

short and long streaks, and STREAK is the length of the sequence-ending streak, we define
16Using data from the college football point-spread betting market, Durham, Hertzel, and Martin (2005)

investigate whether the Bloomfield and Hales (2002) laboratory results supporting the BSV model carry over to
the marketplace. In one set of tests, they examine whether streaks in outcomes against the spread (measured
over the most recent eight games) affect changes in the spread during the week leading up to the next (ninth)
game. We discuss their findings and the consequences for BSV and Rabin below.
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STREAK1 =

 STREAK if STREAK ≤ C

C if STREAK > C,

and

STREAK2 =

 STREAK − C if STREAK > C

0 if STREAK ≤ C.

Both variables are included in a piecewise linear regression (spline regression) that allows

us to examine the impact of short and long streaks on expectations of continuation. The

estimated model (with subject fixed effects) is

Yis = µi + β1STREAK1is + β2STREAK2is + εis,

i = 1, ..., I, s = 1, ..., S, where I is the number of subjects, S (which equals 100) is the number

of observations per subject, and Yis is the reaction measure of subject i for observation s.

The results are presented in Table III for cutoff values of C=3 and 4.17 The first column

presents the results from the experimental data. In both regressions, the F-statistics are

statistically significant although the R-squared values of the regressions are relatively low

(around 6.5%). For both cutoffs, the estimated coefficients for short streaks are negative; the

coefficient is statistically significant for the cutoff at C=3. The negative coefficient estimates

indicate that the longer the streak, conditional on the streak being short, the higher the

likelihood that subjects place on reversal. Focusing on the results for C=3, the magnitude

of the coefficient estimate indicates that subjects on average reduce their probability estimate

of continuation by approximately 0.9% for each unit increase in streak length for streaks of

length up to three.

The analysis of the simulated Rabin data, presented in the second column of the table, also

produces a negative STREAK1 coefficient, with a remarkably similar magnitude to that found
17These cutoff values provided the highest R-squareds among the regressions with cutoff points of C=2, 3, 4,

5, and 6.
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in the experimental data. In contrast, we find a positive STREAK1 coefficient when analyzing

the simulated BSV and Bayesian data (last two columns). Again, focusing on C=3, these

coefficient estimates imply that for each unit increase in streak length, subjects on average

increase the probability of continuation by 1.9% for BSV and 1% for the Bayesian model. As

shown in the table, our conclusions based on the above comparisons are robust to the cutoff

choice and hold for C=4 as well.18

Turning to long streaks (where the definition of “long” depends on the cutoff C), the results

are consistent with all three models. Conditional on the streak being long, the longer the streak

the higher the probability that subjects assign to the next outcome continuing the streak (all

of the coefficient estimates are statistically significant). For the case of C=3, the magnitude

of the coefficient estimate on STREAK2 from the experimental data indicates that subjects

increase their probability assessment by about 1.75% for each unit increase in streak length for

long streaks. The coefficient estimates on STREAK2 from the simulated data from the Rabin,

BSV, and Bayesian models are all positive and very close in magnitude to the experimental

estimate.

The results of the above regression analysis for C = 3 are presented graphically in Figure

3. The figure makes clear why the Rabin model provides a better overall fit to the data.19

Specifically, unlike the Rabin model, neither the BSV nor the Bayesian model can capture the

gambler’s fallacy effect that appears in the experimental subject data for short streaks.
18Although the evidence in Durham, Hertzel, and Martin (2005) (hereafter DSM) is clearly inconsistent with

the BSV model (in that bettors appear to have a non-monotonic response to streaks) it is unclear whether it
is supportive or not of Rabin. The difficulty of comparing with our findings is that the dependent variable in
DHM is the change in spread over the week leading up to the game. It is hard to know, for example, whether
an increase in the spread following a short streak is due to the arrival of sentiment bettors who believe that the
streak will continue or, alternatively, to a market correction of sentiment at the beginning of the week that the
streak will reverse. Given the evidence in DHM that closing spreads follow a random walk, we think the second
alternative (which is consistent with our finding) is a reasonable interpretation.

19In results not presented here we subject the Rabin model to further scrutiny. Because the Rabin decision
maker uses the imbalances in the observed sequence to form predictions about the next outcome (and the streak
predictions are a consequence of the high correlation between streak length and imbalance), we investigated piece-
wise linear regression specifications where imbalance was included as an explanatory variable. The coefficients
from this regression performed on the Rabin data are again very similar to those from the regression performed
on the experimental data. The exact results are provided in the E-companion to this paper.
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B. Treatment Analysis

As discussed earlier, the Rabin model encompasses two informational conditions that produce

qualitatively different implications about decision maker behavior. The first condition, which

we focus on above, is where the DM does not know the urn rate and learns about it from past

outcomes. The second informational condition is the limiting case, where the DM knows that

the rate is 50%. Under this condition, the DM always predicts reversals, and expects that

they are more likely the longer the observed streak. An implication of Rabin is that as the

DM becomes more and more confident that the urn rate is 50%, his prior on the distribution

of rates approaches this limiting case; in other words, the gambler’s fallacy effect becomes

stronger and the urn-updating effect becomes weaker. To investigate, we modify the first

experimental treatment by telling the subjects that the observed outcomes are generated by a

random walk process as can be represented by a fair coin toss.

We begin by structurally estimating the Rabin model using the experimental data from

the modified treatment (Treatment 2). The results are reported in Table V. Consistent with

the prediction of Rabin, and our experimental modification, the table shows an increased

perception of randomness in the new treatment as indicated by the greater prior probabilities

that the subjects place on the urn rate of 50%. Specifically, the table shows that the estimated

values of Rabin model parameters q and r decline relative to the first treatment; the median

parameter estimates indicate that the median (mean) subject places 96% (81%) weight on the

urn rate being 50%, as compared to 81% (71%) for the median (mean) subject in Treatment

1.20 We also note that the median estimates of both the urn size N and the urn renewal

rate K remain as in Treatment 1; N=20 and K=9. This finding indicates that the gambler’s

fallacy effect remains unchanged across treatments. As we will discuss below, this result can

be interpreted as providing additional support for the Rabin model.
20Work by Fox and Rottenstreich (2003) and Bruine de Bruin et al. (2002), showing that individuals may

incorrectly rely on a 50% rate, suggests that it is difficult to draw firm conclusions about rationality by examining
the weight that subjects place on an urn rate of 50%. Although in both treatments we focus on the case where
the true urn rate is 50%, investigating situations where the data is generated from urns with different rates
could provide additional insight into whether subjects incorrectly place too much weight on 50%.
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In parallel to our analysis of Treatment 1, we compare the fit of the Rabin models against the

two rational benchmarks.21 The Rabin model produces improvements of 9% (8.4%) relative to

the Correct model benchmark as illustrated by the comparison of the median (mean) RMSEs of

the two models. By comparing the fit of the Rabin model to that of the Bayesian benchmark,

we find that 8% (6.6%) of the improvement relative to the random walk model, is due to

the gambler’s fallacy bias while 1% (1.8%) can be attributed to rational learning of the urn

rate. This finding stands in sharp contrast to evidence from Treatment 1 that showed rational

learning accounting for approximately half of the improvement of the Rabin model over the

Correct model. This result is consistent with the subjects’ increased confidence that the urn

rate is 50%.22

As noted above, despite being told that the sequences are generated by a fair coin toss, the

structural estimation results for Treatment 2 indicate that the subjects do not fully believe

the experimenters’ assertion that the urn rate is 50%. Thus, we expect the subjects to use

the information from the observed sequences to update the urn rate, albeit to a lesser extent

than the subjects in Treatment 1. Similarly, because the subjects in Treatment 2 are more

confident that the urn rate is 50%, we expect to see a stronger tendency to predict reversals

at any streak length. We present evidence in Table VI consistent with this expectation. The

table provides a comparison across the two treatments of average signed reaction measures by

streak length. A Wilcoxon Signed Rank test (paired Student’s t-test) formally rejects equality

across treatments of the eight signed reaction medians (means) in favor of the alternative

that subjects in Treatment 2 predict more reversals; the one-tailed p-value is 0.027 (0.018).

Although the tendency to predict reversals gets stronger in Treatment 2, we note continuation

following streak lengths of one and two in this treatment. As noted previously, this feature of

the data is inconsistent with the Rabin model.

We also estimate spline regressions of the relation between streak length and the subjects’

probability assessments of the likelihood of continuation. The results for cutoff values of C=4
21In results not reported here we also perform the estimation for the BSV model. Its performance is compa-

rable to that of the Bayesian benchmark model and is significantly worse than that of the Rabin model.
22For completeness, we compare the performance of the Rabin model across treatment conditions. Although

the difference between the mean RMSEs across treatments is not statistically significant (p-value=0.148), it
shows deterioration of performance in Treatment 2.
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and 5 (the specifications with the highest R-squareds) are reported in Table VII. The graphical

representation for the latter specification is depicted in Figure 4. Two findings are of interest.

First, the regression coefficients on both short and long streaks for both the experimental and

the Rabin simulated data are all more negative than those obtained in the first treatment

(see Table IV). For example, the coefficient estimates for STREAK 1 (short streaks) at C=4,

are around three times larger in absolute value than the Treatment 1 estimates, indicating a

stronger tendency to predict reversals for short streaks. Second, the cutoff points (indicating

where urn updating effects begin to dominate) are larger for Treatment 2 (C=4 or 5) relative

to Treatment 1 (C=3 or 4). These findings are both consistent with the Rabin prediction that

increased perception of randomness increases the gambler’s fallacy effect. Taken together with

the other results in this section, the Treatment 2 findings provide additional evidence that

the gamblers’ fallacy effect is an important feature of the data that is captured by the Rabin

model, but not by the model in BSV.

Finally, Treatment 2 allows us to address concerns about the difficulty of distinguishing

between the behavior of a Freddy (who is dogmatic about the urn size N and the urn renewal

rate K) and a rational individual who is learning about N or K and as a result exhibits Freddy-

like behavior along the way (Brav and Heaton (2002)).23 Since subjects in Treatment 2 are

told the true process, and thus have little to learn about the urn renewal rate or the size of

the urn over time, we would expect that a rational decision maker would more quickly learn

that drawing from the urn is with replacement, and we would expect to see estimates of the

urn size that are significantly larger that those in Treatment 1 (or estimates of K that are

close to 1). This is not the case. The median estimated urn sizes (urn renewal rates) in both

treatments are 20 (9), indicating a significant gambler’s fallacy effect that is the same across

treatments. This result suggests that what we observe is not due to subjects’ learning and

that the gambler’s fallacy is indeed a behavioral “bias” as it manifests itself even in settings

in which agents should believe that there is little to learn.
23The DM will make correct inferences if he learns that N = ∞ or K = 1.
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V. Conclusion

Cognitive psychologists have amassed considerable evidence that a wide variety of cognitive bi-

ases affect judgment and decision-making. A promising class of behavioral models that serves

to synthesize the effects of these various biases in a tractable way centers on the decision-

making of quasi-Bayesian agents. In this paper, we test and compare the empirical accuracy of

two leading quasi-Bayesian models that focus on judgment errors associated with processing

information from random sequences. In particular, we examine whether experimental subjects

exhibit behavior that is more consistent with regime-shifting beliefs as hypothesized by Bar-

beris, Shleifer, and Vishny (1998) or with beliefs in the law of small numbers as modeled by

Rabin (2002). Our results provide evidence supportive of the model in Rabin (2002). We find

little evidence consistent with investor belief in regime-shifting of the type envisioned by BSV.

In our first set of tests, we use our experimental data to structurally estimate the parameters

of each model and test for goodness of fit against each other and against two benchmark models.

We find that both behavioral models provide a significantly better fit than the benchmarks,

and that the Rabin model provides a significantly better fit than the model in BSV. For each

model, we then use the individual structural parameter estimates to simulate the predictions

of decision makers faced with the same task as our subjects and compare outcomes. This

comparison analysis, as well as a regression analysis that examines how subjects respond to

streaks in the data, yields results that are consistent with the implications of Rabin but not of

BSV. Finally, we provide additional insight and evidence consistent with the Rabin model, by

altering the information environment in a second set of experiments, and comparing results.

The models we investigate here have natural applications to understanding investor be-

havior, but have broader applicability to any situation where individuals make decisions when

confronted with random data. For example, decision makers that observe forecast errors (e.g.,

from sales forecasts) may be subject to the same set of influences and exhibit similar behaviors

to that envisioned by BSV and Rabin. Further, the models and our findings may serve as

useful benchmarks in providing a better understanding of how individuals respond to patterns

24



in data that actually do contain information. To that end, we hope our analysis encourages

other laboratory experiments and that our results lead to better models.
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Appendix

A. BSV Model

In this section we present the BSV model as it applies to our experimental setup. The deci-

sion maker observes a sequence of outcomes y1, ..., yt, yt ∈ {UP,DOWN}, each of which is

generated by one of two models (regimes). If the state variable st = 1 then Model 1 generates

yt, while if st = 2 then Model 2 generates yt. Both models are Markov processes with the

following transition matrices:

Model 1 yt+1=UP yt+1=DOWN

yt=UP πL 1− πL

yt=DOWN 1− πL πL

Model 2 yt+1=UP yt+1=DOWN

yt=UP πH 1− πH

yt=DOWN 1− πH πH

Here 0 < πL < 0.5 < πH < 1 and thus Model 1 is the reversal model while Model 2 is the

continuation model. The state variable also follows a Markov process with transition matrix

st+1 = 1 st+1 = 2

st = 1 1− λ1 λ1

st = 2 λ2 1− λ2

Using the above information and the observed past outcomes, the decision maker uses the

following recursive formula for her posterior belief, qt about being in the reversal regime.

Given qt−1 = Prob(st−1 = 1|yt−1, yt−2, ..., y0) = Prob(st−1 = 1|yt−1, yt−2, qt−2), qt is com-

puted as:

((1− λ1)qt−1 + λ2(1− qt−1))Pr(yt|st = 1, yt−1)
((1− λ1)qt−1 + λ2(1− qt−1))Pr(yt|st = 1, yt−1) + (λ1qt−1 + (1− λ2)(1− qt−1))Pr(yt|st = 2, yt−1)

.24

As proven in BSV, if yt−1 = (6=)yt then qt−1 < (>)qt, i.e., the decision maker puts more weight

on Model 2 when she observes consecutive like outcomes. In our experiment subjects observe

eight outcomes and are asked to report the probability of the next, ninth, outcome being UP.
24For a derivation of the formula the reader should refer to BSV. The authors use q0 = 0.50.
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Given ys
1, ..., y

s
8, and the underlying parameters πL, πH , λ1, λ2, the probability that the decision

makers assigns to y9 being UP is

Pr(ys
9 = UP |ys

1, ..., y
s
8, πL,i, πH,i, λ1,i, λ2,i) = Pr(ys

9 = UP |s9 = 1)q8+Pr(ys
9 = UP |s8 = 2)(1−q8),

where

Pr(ys
9 = UP |st = 1) = I{ys

8=UP}∗((1− λ1)πL + λ1πH)+I{ys
8=DOWN}∗((1−λ1)(1−πL)+λ1(1−πH)),

P r(ys
9 = UP |st = 2) = I{ys

8=UP}∗((1−λ2)πH+λ2πL)+I{ys
8=DOWN}∗((1−λ2)(1−piH)+λ2(1−πL)).

I{ys
8=y} = 1 if ys

8 = y, y ∈ {UP,DOWN}, and 0 otherwise.

BSV take q1=0.5. We estimate q1 for each subject.

B. Rabin Model

Here we present the formal treatment of the Rabin model as is applied in our empirical analysis.

Let the urn size be N and the renewal rate be K, K < N . The possible values of the urn rates

are taken to be

Θ = {θ1, θ2, ..., θ9} = {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}

Let πj denote the prior probability Pr(θj), j = 1, ...9. Given a sequence y1, y2, ...., yn of n

observed outcomes, let I denote the number UP outcomes in that sequence. Assuming that

the urn has not been renewed (i.e., assuming that K > n), the posterior probabilities of the

possible urn rates are

π̂j = Pr(θj |I) =
Pr(I|θj)πj

Pr(I)
, (A-1)

where Pr(I) =
∑9

j=1 Pr(I|θj)πj , and Pr(I|θj) =


(θjN

I
)(N−θjN

n−I
)

(N
n) if I ≤ θjN < N + I − n,

0 otherwise.
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Pr(yn+1 = UP |y1, y2, ..., yn) = Pr(yn+1 = UP |I) =
9∑

j=1

Pr(yn+1 = UP |I, θj)Pr(θj |I),

where Pr(yn+1 = UP |I, θj) = max(0,
θjN−I
N−n ).

Subjects in the experiment observe sequences of eight outcomes (ys
1, ..., y

s
8). If K > 8

then the above formula applied for n = 8 provides Pr(ys
9 = UP |ys

1, ..., y
s
8, Ni,Ki, qi, ri). If

K ≤ 8 then the formula (A-1) has to be applied b 8
K c25 times for n = K and one time

for n = mod(8,K), where with each application the posterior from the previous application

becomes the prior of the next one. For example, if K=3 then b 8
K c = 2 and mod(8,K) = 2.

Thus, by first applying (A-1) with a prior πj , j = 1, ..., 9, and the first three outcomes of the

sequence (i.e, n = K = 3), one derives the posterior π̂j , j = 1, ..., 9. Then using π̂ as the

prior (for the second application of formula (A-1)), and outcomes four to six in the sequence

(i.e, n = K = 3), one derives the posterior ˆ̂πj , j = 1, ..., 9. Finally, using ˆ̂πj as the prior, one

applies the above formula for the seventh and eighth outcomes (i.e., n = mod(8, 3) = 2) to

obtain Pr(ys
9 = UP |ys

1, ..., y
s
8, Ni,Ki, qi, ri) = Pr(ys

9 = UP |ys
7, y

s
8, Ni, ˆ̂πj).

25b·c denotes the floor function, bxc = max{a ∈ Z, a ≤ x}.
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Tables and Figures
Table I

Basic Descriptive Statisticsa

Reported Reaction
Prob(UP) Measure

Treatment 1 Median 0.50 0
Mean 0.519 0.006
Q1 0.40 -0.10
Q3 0.65 0.13

Treatment 2 Median 0.50 0
Mean 0.52 0.006
Q1 0.40 -0.14
Q3 0.70 0.15

aThe statistics presented in the table are computed across subjects and across observed sequences.
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Table II
Structural Estimation Results, Treatment 1

Panel A: BSV
Model Statistic πL

a πH
b λ1

c λ2
d RMSE

BSV Mean 0.44 0.71 0.1 0.24 0.1760
Quartile 1 0.43 0.50 0 0.02 0.1299
Median 0.47 0.59 0.01 0.24 0.1934
Quartile 3 0.50 0.98 0.11 0.5 0.2291

Panel B: Rabin
N K q r RMSE

Rabin Mean n.a.e 7.63 0.017 0.031 0.1639
Quartile 1 12.50 7 0 0 0.1093
Median 20 9 0.003 0.018 0.1787
Quartile 3 39.26 9 0.02 0.05 0.2167

Panel C: Benchmarks
q r RMSE

Bayesianf Mean 0.017 0.028 0.1791
Quartile 1 0 0 0.1418
Median 0 0.0018 0.1924
Quartile 3 0.03 0.04 0.2328

Correct model Mean 0.1906
(Random Walk) Quartile 1 0.1418

Median 0.2077
Quartile 3 0.2565

aπL is the probability of continuation in the reversal regime, 0 ≤ πL ≤ 0.5.
bπL is the probability of continuation in the continuation regime, 0.5 ≤ πH ≤ 1 .
c0 ≤ λ1 ≤ 1
d0 ≤ λ2 ≤ 1
eFive of the subjects in Treatment 1 reported 50% after each sequence. Consequently, the upper bound on N is

binding for those subjects (as their behavior is obtained as N →∞). Even after the removal of those subjects, there
are still others for whom the optimization procedure ends having reached the upper bound for N=10,000.

fThe Bayesian model can be derived as a particular case of the Rabin model when N →∞ or when K → 1.
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Table III
Simulation Results: Signed Reaction Averagesa

Streak Length
1 2 3 4 5 6 7 8

Panel A: Experimental Subjects
0.7514 -0.1214 -0.5942 -0.6304 3.2880 2.5924 9.2174 8.9348 (×10−2)

Panel B: Rabin Simulationsb

-0.4256 -1.3605 -1.4070 -0.0992 1.0313 1.6549 7.9365 14.0945 (×10−2)

Panel C: BSV Simulationc

-2.0160 0.1273 2.0977 3.5310 6.2593 8.4092 11.1173 15.9177 (×10−2)

Panel D: Bayesian Simulationd

-0.0426 0.6129 2.3126 4.3253 5.3682 6.7173 9.5255 15.3538 (×10−2)

aGiven the signed reactions of the experimental subjects and the signed reactions simulated according to BSV, the
Rabin, and the Bayesian model, this table presents the averaged signed reactions grouped by sequence-ending streak
length. Thus, given the sequences s1,...,s100, and letting |sj | denote the length of the streak ending the sequence
sj , j = 1, ..., 100, the table reports 1

L

∑
i,j,|sj |=k Yij , k = 1, ..., 8, where Yij is the reaction measure of subject i for

sequence sj . L is the number of summands.
bThe panel reports the aggregated results from the subject-level Rabin simulations.
cThe panel reports the aggregated results from the subject-level BSV simulations.
dThe panel reports the aggregated results from the subject-level Bayesian simulations.
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Table IV
Piecewise Linear Regression, Treatment 1a

Coefficient Estimatesb

Cutoff Variable Data Rabin BSV Bayesian

C=3 STREAK1 -0.912 -0.794 1.927 1.017
(-2.148) (-4.322) (18.759) (8.260)

STREAK2 1.742 2.032 2.327 1.992
(4.505) (12.140) (24.858) (17.760)

Adj R2 0.0637 0.1431 0.6021 0.1869
(10.19) (76.82) (1020.66) (375.80)

C=4 STREAK1 -0.509 -0.362 1.905 1.186
(-1.561) (-2.564) (24.159) (12.541)

STREAK2 2.534 2.869 2.614 2.240
(4.493) (11.755) (19.164) (13.688)

Adj R2 0.0639 0.1440 0.6029 0.1866
(10.63) (79.27) (1026.73) (375.07)

aThe estimated (fixed effects) model is Yij = µi + β1STREAK1ij + β2STREAK2ij + εij , Yij is the reaction
measure of subject i in trial j, i = 1, ..., 46, j = 1, ..., 100. We report the results for the experimental data, and for
each of the simulated data sets corresponding to the Rabin, BSV, and the Bayesian model. We report results for
C=2,3,4.

bThe t-statistics and the F-statistics are in the parentheses.
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Table V
Structural Estimation Results for the Rabin Model, Treatment 2

N K q r RMSE
Rabin Mean n.a. 7.09 0.01 0.021 0.1968

Quartile 1 14.5 5 0 0 0.951
Median 20 9 0.0003 0.004 0.2106
Quartile 3 168.84 9 0.0025 0.03 0.2882

Bayesian Mean 0.009 0.017 0.211
Quartile 1 0 0 0.1055
Median 0 0.001 0.2292
Quartile 3 0.006 0.027 0.2951

Correct model Mean 0.2148
(Random Walk) Quartile 1 0.1058

Median 0.2314
Quartile 3 0.3030
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Table VI
Signed Reaction Averages: Comparison between Treatmentsa

Streak Length
Data 1 2 3 4 5 6 7 8
Treatment 1 0.7514 -0.1214 -0.5942 -0.6304 3.2880 2.5924 9.2174 8.9348 (×10−2)
Treatment 2 1.7957 2.1667 -2.2373 -4.6522 -2.4239 -2.9348 -0.5652 -1.1304 (×10−2)

aGiven the signed reactions of the experimental subjects in Treatment 1 and Treatment 2, this table presents
the averaged signed reactions grouped by sequence-ending streak length. Thus, given the sequences s1,...,s100, and
letting |sj | denote the length of the streak ending the sequence sj , j = 1, ..., 100, the table reports 1

L

∑
i,j,|sj |=k Yij ,

k = 1, ..., 8, where Yij is the reaction measure of subject i for sequence sj . L is the number of summands. Using the
eight averages, the paired t-test (the Wilcoxon Signed Rank Test) rejects the equality of the means (medians) of the
samples in favor of the alternative that the subjects in Treatment 2 tend to predict more reversals, one-tailed p-value
is 0.018 (0.027).
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Table VII
Piecewise Linear Regression, Treatment 2a

Coefficient Estimatesb

Cutoff Variable Data Rabin

C=4 STREAK1 -1.885 -1.332
(-4.949) (-10.082)

STREAK2 0.537 1.501
(0.815) (6.569)

Adj R2 0.0565 0.0809
(14.71) (29.63)

C=5 STREAK1 -1.583 -1.056
(-5.070) (-9.757)

STREAK2 1.247 2.698
(1.220) (7.610)

Adj R2 0.0562 0.0806
(14.00) (28.96)

aThe estimated (fixed effects) model is Yij = µi + β1STREAK1ij + β2STREAK2ij + εij , Yij is the reaction
measure of subject i in trial j, i = 1, ..., 46, j = 1, ..., 100. We report the results for the experimental data and for
the simulated data sets corresponding to the Rabin model. We report results for C=4 and 5.

bThe t-statistics and the F-statistics are in the parentheses.
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Figure 1. A Snapshot of the Interactive Experimental Software
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Figure 2. Reaction Measure-Streak Length Graphs a
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(a) The Experimental Data
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(b) The Rabin Model

1 2 3 4 5 6 7 8

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Streak Length

A
ve

ra
ge

 S
ig

ne
d 

R
ea

ct
io

n 
M

ea
su

re

(c) The BSV Model
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(d) The Bayesian Model

aEnding streak length is on the x-axis. Average signed reaction measure (averaged across all subject’s responses
for the corresponding streak length) is on the y-axis.
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Figure 3. Treatment 1 Regression Resultsa
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Experiment
Rabin Data
BSV Data

aThe figure graphically displays the results of the regression Yij = µi + β1STREAK1ij + β2STREAK2ij + εij

(where Yij is the reaction measure of subject i in trial j, i = 1, ..., 46, j = 1, ..., 100) as presented in Table IV. The
graph is for a cutoff of C=3.
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Figure 4. Treatment 2 Regression Resultsa
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Experiment
Rabin Data

aThe figure graphically displays the results of the regression Yij = µi + β1STREAK1ij + β2STREAK2ij + εij

(where Yij is the reaction measure of subject i in trial j, i = 1, ..., 46, j = 1, ..., 100) as presented in Table VII. The
graph is for a cutoff of C=4.
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