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PRICE FORMATION IN CONTINUOUS DOUBLE AUCTIONS; WITH

IMPLICATIONS FOR FINANCE1

Elena Asparouhovaa, Peter Bossaertsb and John O. Ledyardc

We argue that an empirically relevant theory of price and allocation adjust-

ments in multiple parallel Continuous Double Auctions (CDA) should take into

account that CDAs are competitive only for small quantities. Hence, any ad-

justment theory should be based on Local Equilibrium concepts. Here, we build

a Local Marshallian Equilibrium theory and compare it to its Walrasian coun-
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terpart. We provide experimental support for one version of Local Marshallian

Equilibrium theory, where bid revision occurs at a slower speed than price ad-

justment. In our experiments, we induced quasi-linear, quadratic preferences. As

such, they are isomorphic to finance experiments on the Capital Asset Pricing

Model (CAPM). We find that one specific portfolio is mean-variance optimal

in the Local Marshallian Equilibrium, thus showing that it is possible to de-

rive a portfolio-based asset pricing theory even for markets that are off (global)

equilibrium.

Keywords: Continuous Double Auction, Walrasian Equilibrium, Local Mar-

shallian Equilibrium, Price Discovery, CAPM, Mean-variance Optimality.
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1. INTRODUCTION

General Equilibrium Theory (see, e.g., Aliprantis, Brown and Burkinshaw

(1989)) is a widely accepted model of behavior in competitive markets. But

it remains an equilibrium theory. How the equilibrium prices are discovered,

and how, if at all, trading occurs out of equilibrium, remains to be explained.

Until recently, attempts to settle this question have been theoretical in

nature with no real evidence available to help sort the sensible from the

inane. Traditional empirical analyses of markets can shed little light on the

processes because they do not have access to the fundamentals. But, with

the advent and development of experimental economics, it is now possible

not only to know the fundamentals, but also to control them, and so, to

observe the process of price discovery and equilibration in a replicable and

controlled manner. These observations, in turn, can provide guidance for

the development of new and more appropriate theory.

It is time to re-examine the nature of price discovery in markets. Here, we

look at trading and price dynamics in the context of simultaneous multiple

markets. The market organization we focus on is the continuous double

auction (CDA), partly because there are a large number of experimental

studies utilizing this organization and partly because the CDA is similar

to many organized markets encountered in the field; e.g., purely electronic

stock markets such as Euronext.

Starting with Smith (1962), markets experiments have shown that the

CDA can generate competitive equilibrium (though not always). That there

exists an institution that delivers is comforting. Indeed, it contrasts with the

state of theoretical analysis about price discovery, where one has yet to agree

on the right paradigm. Ever since the examples in Scarf (1960) and Gale

(1963), it is well known that the Walrasian price adjustment (prices adjust in

the direction of excess demand) would fail in more than just a few interesting

cases. As such, economists have no reason to believe that equilibrium is a
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state towards which economies naturally move to. Yet economists, especially

in macro-economics and finance, continue to insist on equilibrium analysis.

More strikingly, they insist on interpreting historical data from the field as

if they reflect markets that are always in equilibrium.

We are interested in determining how prices and allocations move off-

equilibrium. Our analysis will boil down to a dialogue between theory and

experiments. We will focus on exchange economies.

2. STANDARD GENERAL EQUILIBRIUM THEORY

In this section we very briefly review the standard general equilibrium

theory for exchange environments. We do this primarily to have, in one

place, notation and concepts we use throughout the rest of the paper.

2.1. Exchange environments

There are N consumers, indexed by i = 1, . . . , N . There are K commodi-

ties, indexed by k = 1, . . . , K. Let xi = (xi1, . . . , x
i
K) be the consumption

of i and let X i = {xiε<K | xi ≥ 0} be the admissible consumption set

for i. Each i owns initial endowments ωi = (ωi1, . . . , ω
i
K) such that ωik > 0

for all i and k. Consumption will occur by combining initial endowments

with net trades. Let diεRK be a vector of net trades. Then xi = ωi + di.

Finally, each i has a quasi-concave utility function, ui(xi). We will assume

that uiεC2 (that is, it has continuous second derivatives) although many

of our results would hold under weaker conditions. We also assume that

{xi|ui(xi) ≥ ui(wi)} ⊂ Interior(X i).

2.2. Equilibrium

Competitive market equilibrium in an exchange economy is straight-

forward to describe. Let pk be the price of commodity k. Given a vector
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of prices, p, the excess demand of i is ei(p, ωi) = arg maxdi u
i(ωi + di) sub-

ject to pdi = 0 and wi + di ∈ X i. The aggregate excess demand, of the

economy, is e(p, ω) =
∑
ei(p, ωi).

A price, p∗, and a vector of trades, d∗ = (d∗1, ..., d∗N) is a market equilib-

rium if and only if

e(p∗, ω) = 0

and

d∗i = ei(p∗, ωi),∀i = 1, ..., N.

2.3. Dynamics

One needs a compelling reason to be interested in equilibrium. One is the

“argument, familiar from Marshall, ... that there are forces at work in any

actual economy that tend to drive an economy toward an equilibrium if it

is not in equilibrium already.”1 While the argument is part of conventional

wisdom, we unfortunately do not understand these forces. We actually know

little about the true nature of price discovery, i.e., the dynamics that lead

to equilibrium.

There are two basic models that are at the foundation of most early

analyses of market dynamics. One, traceable to Walras, is the tatonnement

dynamics. Formally it is:2

dp

dt
= e(p, ω)

di(t) =

 0 if p 6= p∗

ei(p) if p = p∗

1Arrow and Hahn (1971), p. 263.
2There are a variety of generalizations of this structure that allow for variations in the

speed of adjustment such as dpk/dt = λkek(p, ω) with λk > 0. We will not need to refer

to these in this paper.
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A lot is known about this dynamical system. For example, if the excess

demand functions satisfy a “gross substitutes condition,” then p(t)→ p∗ as

t → ∞. But there are very simple exchange environments, examples from

Gale (1963) and Scarf (1960), in which such convergence does not occur.

More importantly, for what follows, the tatonnement is only a theory

about prices. No adjustment from the initial endowments takes place until

after the prices reach equilibrium.3 Trading, d, follows prices, p.

The other basic model, non-tatonnement dynamics, is described by
dp

dt
= e(p, ω + d(t))

ddi

dt
= gi(p, ωi + di(t))

For now, the equations, gi( ) remain unspecified4 except for an important

feasibility constraint on this system:

∑
i

ddi

dt
=
∑
i

gi(p, ωi + di(t)) = 0.

The main thing we know about the non-tatonnement dynamical system is

that if the gi are continuous and if there is voluntary exchange and no spec-

ulation then it converges to an interesting rest point. Voluntary exchange

and no speculation imply that (∇u · ḋ(t) > 0). Thus, as t →∞, d(t) → d∗

where w+d∗ ∈ {Pareto-optimal allocations} and p(t)→ p∗ where (p∗, 0) is a

market equilibrium for the exchange economy with the endowment wi + d∗i

for each i. It need not be true that (p∗, d∗) is an equilibrium of the exchange

economy with the endowment w. As opposed to the Walrasian tatonnement,

here prices, p, follow trades, d.

3This might describe, for example, the “book building” process in a call market if

orders can be withdrawn. It should not be expected to describe the price formation

process in a continuous trading market in which transactions occur as prices are changing.
4For specific examples of this type of dynamic, see Arrow and Hahn (1971), Hahn and

Negishi (1962), Uzawa (1962), Friedman (1979), and Friedman (1986).
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3. SOME SYLIZED FACTS FROM EXPERIMENTS

Before proceeding with more theory, let us look at some of the experi-

mental evidence to see whether either of the two models in Section 2 is on

the right track in explaining price discovery in markets.

3.1. The Structure of Market Experiments

For those unfamiliar with markets experiments, we briefly describe how

one proceeds.5 Subjects come to the lab or access the experiment online.

They are told they will participate in a market experiment. An experiment

proceeds in periods. At the beginning of each period each subject is given

a basket of assets, wi. Trading then occurs, via whatever institution the

experimenter is using, until the period ends. At the end of the period, sub-

jects will have traded di and will have final holdings of xi = wi + di. They

are paid for their final holdings according to ui(xi). They know this payoff

function at the beginning of the experiment. If desired, a new period begins.

Two standard trading institutions used in experiments (among many)

are the Continuous Double Auction (CDA) and the Call Market (CM). The

CDA is an open outcry process in which subjects post offers for quantities

yik at prices pik, which can be accepted by others. When accepted an offer

becomes a completed trade and it is withdrawn from the marketplace. The

CDA can be thought of as a non-tatonnement dynamic. The Call Market is

more similar to the tatonnement dynamic. Subjects also post bids of (pik, y
i
k)

but, contrary to the CDA, no transaction occurs or is accepted until the

market is called. If the book is closed (i,e, subjects cannot see each others’

bids), this is just a sealed bid auction. If the book is open (i.e. subjects can

see each others’ bids) and subjects can withdraw their bids and submit new

ones, then this is a tatonnement in which the Call Market is the auctioneer.

5We describe a complete markets experiment later on.
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We focus on the CDA in this paper.

3.2. Findings from Market Experiments

Easley and Ledyard (1992) examined data from early CDA single com-

modity markets.6 These markets involved a series of periods called days.

Each agent’s payoff function remained unchanged from day to day. Rather

than looking at the average price in a day, Easley and Ledyard looked at the

upper and lower bound on prices for each day. They found that the bounds

responded from day to day as predicted by the Walrasian model. That is,

if there were an excess demand at the upper bound of the previous day’s

prices then the upper bound on today’s prices would be higher. They also

found that prices within a day seemed to respond to marginal willingness to

pay (accept), a dynamic often called Marshallian. Finally they found that

initial trades responded to demands and supplies at the bounds of the pre-

vious day’s prices (that is, initial trades are Walrasian) while later trades

responded more to local information such as the gradients of the utility

functions (that is, later trades are Marshallian). But Easley and Ledyard

never extended the analysis to exchange environments with non quasi-linear

preferences or with more than 2 commodities.

Anderson, e.a. (2004) examined the dynamic behavior of prices in the

context of environments closely related to those in Scarf (1960). These are

particularly interesting environments in that the Walrasian dynamic does

not lead prices to converge to the unique market equilibrium in some of

them. Their experiments also involved a series of days. A quick summary,

that does not do justice to their paper, is that interday price dynamics are

consistent with the Walrasian tatonnement and intraday price dynamics are

not.

6These were presented to subjects as partial equilibrium worlds. But they are equiv-

alent to exchange environments with 2 commodities and quasi-linear preferences.
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Let π(τ) be the average price on day τ, and ∆(τ) = π(τ) − π(τ − 1).

Anderson et. al. find that ∆(τ) = λe(π(τ − 1), ω) where λ is a diagonal

matrix with λij = 0 whenever i 6= j and λii > 0 for i = 1, ..., K − 1.

That is average prices move from day to day in a manner predicted by the

tatonnement model, even though the CDA is not a tatonnement system.

On the other hand, Anderson, e.a. (2004) uncover no such relationship for

intraday trades and prices. Let p(t), d(t) be the result of the tth transaction

in a particular day. Neither p(t)−p(t−1) = λe(p(t−1), w) nor p(t)−p(t−
1) = λe(p(t−1), w+d(t−1)) seem to fit the data. Intraday trading in CDA

markets cannot be explained by the standard models. Neither model from

section 2.3 is consistent with the facts above.

At this point our main question remains open: what is the mechanism by

which prices and quantities are driven in a CDA?

4. LOCAL GENERAL EQUILIBRIUM THEORY

Typically in CDAs, whether the laboratory or the field version, the bid-

ask spread, namely, the difference between the prices of the best sell and

buy orders, is small, i.e., the quotes are valid only for limited quantities.

Consequently, price taking may only be a good characterization for small

orders. CDAs are competitive only in smalls. This contrasts with Walrasian

equilibrium theory. There, agents are price-takers no matter how large their

demands.

In this paper, we advance a general equilibrium theory for markets where

price-taking only applies to small orders. At its core is the assumption that,

to avoid adverse price movements, agents only submit small orders that are

optimal locally. Therefore, we shall call it local general equilibrium theory.

A local general equilibrium theory presumes that the forces that determine

trading and price formation derive from local conditions at the current prices

and allocations. Such a theory is based on the concept of a local exchange

ectaart.cls ver. 2006/04/11 file: decentPricing110531.tex date: June 4, 2011
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economy.

4.1. Local Exchange Environments

A local exchange economy at time t is described by the local allocation,

xi(t) = wi + di(t), a set of feasible local trades, F i(xi(t)) = {ηi} ⊂ <K , and

the local utility function, [∇ui(xi(t))]ηi. Feasibility requires that
∑
i η

i = 0.

In this local economy there is a temporary local equilibrium.

The dynamics are described by the movement through time from one

local equilibrium to the next. There is a Walrasian theory and a Marshallian

theory.

4.2. A Local Walrasian Theory

Champsaur and Cornet (1990) use the concept of a local Walrasian equi-

librium7 to create a theory of dynamic price adjustment.

Let ηi(p) ∈ argmax ∇ui(xi) · ηi subject to pη = 0 and η ∈ F i. ηi(p) is

i’s local excess demand function. Note that F i is constant on xi(t). A local

Walrasian equilibrium at x is (η∗(x), p∗(x)) where
∑
ηi(p∗(x)) = 0, and

ηi∗(x) = ηi(p∗).

The dynamics of the local Walrasian model are given by

p(t) = p∗(x(t))(4.1)

ẋi = η(p∗(x(t))(4.2)

Champsaur and Cornet (1990) assume that ∇ui(xi) � 0,∀xi and that

F i = {η|η ≥ −δ}. That is, the local economy is linear in an Edgeworth box.

Their main result is the following.

Theorem 1 (i) for all t, x(t) is attainable, (ii) dui/dt ≥ 0, (iii) p(t)ẋi =

0, and (iv) as t → ∞, with strict quasi-concavity of the utility functions,

7They call this a Marginal Walrasian equilibrium.
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x(t) converges to a Pareto-optimal allocation x∗ and p(t) converges to a p∗

such that e(p∗, x∗) = 0.

It is, of course, not necessarily true that (x∗, p∗) is a (global) Walrasian

equilibrium for w; that is, it is not necessarily true that e(p∗, w) = 0.

A discrete version of the Local Walrasian theory has been provided by

Bonnisseau and Nguenamadji (2009). The primary difference from the above

is that they use the global utility, ui(xi(t) + ηi), in place of the local utility,

∇ui(xi) · ηi. With that, and the discreteness of time, they get convergence

to Pareto-optimal allocations in a finite number of steps.

4.3. A Local Marshallian Theory

Samuelson (1947) (p. 264) describes a Marshallian dynamic of quantity

adjustment, as opposed to the Walrasian price adjustment, as follows. “If

‘demand price’ exceeds ‘supply price,’ the quantity supplied will increase.”

He provides a formalization of this based on the inverses of the partial equi-

librium aggregate demand and supply curves. Unfortunately, in an exchange

economy there is no obvious way to generate an inverse demand function or

an inverse supply function without making some explicit assumptions about

the allocations that do not seem reasonable.8 In this section, we propose a

dynamic process, different from Samuelson’s, that uses the Marshallian in-

tuition.9

It is easiest to incorporate a Marshallian approach into a general equi-

8If we assume there are only two goods and quasi-linear utility functions, then di(p) =

∇xu
−1(p)−wi. We can say the aggregate demand at p is D(p) =

∑
i max{0, di(p)} and

the supply is S(p) = −
∑

i min{0, di(p)}. Given D(p) the “demand price” is D−1(Q).

The dynamic proposed by Samuelson is dQ/dt = α[D−1(Q) − S−1(Q)]. Left unsaid is

what happens to each di.
9Earlier versions of allocation mechanisms based on this intuition can be found in

Ledyard (1971) and Ledyard (1974).
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librium model if we adopt the concept of “numeraire”. For the rest of this

paper, we assume that uiK(xi) > 0,∀xi. Let p = (q, 1) and di = (ri, si) ∈
<K−1+ × <. Here si is i’s quantity of the numeraire commodity. We will let

ρik = ∇u(xik)/u
i
K(xi), namely, i’s marginal willingness to pay for rk in units

of K. Let ρi = (ρi1, ..., ρ
i
K−1).

Let bik be the amount that i expresses to the market about their willing-

ness to pay or accept. bik is the most i is willing to pay (in units of K) for

units of k or the least they are willing to accept. We will call this a bid but

it could also be i’s “reserve price” where they would be willing to take a

unit of k in trade at a price lower than bik if they saw such a price offered

in the market.

The Marshallian intuition is that quantities move towards those who are

prepared to offer the higher surplus, relative to the market. That is, if there

is a market price, q, then buyers with higher bi−q will buy faster. Formally,

over a time period δ, i’s trades will be ∆ri = rit − rit−δ = α(bi − q), where α

is the rate at which surplus is translated into trade.

Faced with this prospect, how should an individual choose their bid, bi?

Individual i wants to make ∆ui = uit − uit−δ > 0 large, if at all possible.

Locally ∆ui is approximately equal to (ρi − q)∆ri, i.e., (ρi − q)α(bi − q).

Therefore i wants to choose bi so that bi−q = ciδ(ρi−q) where ciδ is chosen

to control the rate at which i will trade. Since this is a linear approximation

of the individual’s utility increase, she will not want ciδ to be too large.10

With these bids and this trading dynamic, trading is feasible if and only

if
∑

∆ri = 0. This is true if and only if q =
∑

ciρi∑
ci

= ρ̄. We can think of q

as the local Marshallian “equilibrium price.” It is the only price at which

individuals will not want to change their bids, given the Marshallian trade

dynamic.

10See the Appendix for one possible calculation of “too large”.
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To summarize, we have

∆ri = α(bi − q)(4.3)

bi = q + ciδ(ρi − q)(4.4)

∆si = −q∆ri(4.5)

q =

∑
ciρik∑
ci

(4.6)

.

Substitute (4.4) into (4.3) and let δ → 0. This leads to a continuous-time

local Marshallian equilibrium theory:

ṙik = αci(ρik − qk)(4.7)

ṡi = −qṙi(4.8)

qk =

∑
ciρik∑
ci

(4.9)

Remark 1 The above is a “reduced form” competitive theory. It assumes

that traders are taking two things as given: (i) prices q and (ii) the trading

rule ∆ri = rit − rit−δ = α(bi − q). If i behaves competitively, then i takes q

as given and chooses bi = q + ci(ρi − q). Summing across i on both sides of

this response equation and dividing by N yields b̄ = q + (1/N)
∑
ci(ρi − q).

Therefore, in equilibrium, q = b̄ = ρ̄.

One way to see why this might make sense is to consider what happens

in a CDA. First, transactions take place when someone’s bid is accepted. So

on average the transaction price will be b̄. Second, those with the most to

gain, those with the largest difference in bi− b̄, will trade faster than others.

Thus trade should occur, on average, according to the process we described

above. That is, (4.7)-(4.9) can be loosely thought of as the expected value of

a stochastic process whose absorbing states are the rest points of (4.7)-(4.9).
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Another way to see whether (4.3)-(4.6) might describe something real is

to consider whether it is incentive compatible. Would an optimizing agent

be willing to follow these rules? It can be shown that (4.3)-(4.6) satisfies

two types of incentive compatibility.

Suppose i believes (4.3) and that q is unknown. If i wants to protect herself

against possible losses, i.e. i wants to ensure that ∆ui = ui(xi(t)+∆xi(t))−
ui(xi(t)) ≥ 0, then i should choose bi = ρi. So i should choose ci = 1/δ. This

type of local incentive compatibility is identical to that introduced by Dreze

and de la Valllee Poussin (1971). It is a maximin type of defensive bidding

which exhibits extreme risk aversion.

One can also imagine a less defensive approach. Suppose all i believe

∆ri = α(bi− q) and that q = (1/N)
∑
bi, the Marshallian equilibrium price.

Further suppose they choose bi to be a local Nash Equilibrium. That is, for

every i,

bi ∈ argmax ∆ui = (ρi − q)α(bi − q)(4.10)

= (ρi −
∑
j b

j

N
)(bi −

∑
j b

j

N
)(4.11)

Letting b̄ =
∑

bj

N
, the first order conditions for this are: −1

N
(bi− b̄)+ N−1

N
(ρi−

b̄) = 0 or bi = b̄ + (N − 1)(ρi − b̄). Summing over i gives b̄ = ρ̄ =
∑

ρi

N
. So

the local Nash equilibrium has bi = ρ̄+(N −1)(ρi− ρ̄). Since q = b̄ = ρ̄ this

means bi = q + (n− 1)(ρi − q). Compare this to (4.4) to see that ci = N−1
δ

.

Thus, local Nash equilibria look exactly like local Marshallian equilibria.

We have the following:

Theorem 2 (Convergence to Pareto Optimality)

Let x(t) = [r(t), s(t)]. For the dynamics in (4.7)-(4.9), [x(t), p(t)] →
(x∗, p∗) where x∗ is Pareto-optimal and e(p∗, x∗) = 0.

Proof: For each i, u̇i(t) = (∇ui)ηi = uiK(ρi, 1)(ṙi,−qṙi) = uiK(ρi − q)ṙi =

uiK(ρi−q)ci(ρi−q) > 0 unless ρi = q. Therefore d(
∑
ui)/dt > 0 unless ρi = q
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for all i. This, and the continuity of the differential equation system allows

us to use
∑
ui as a Lyapunov function and apply the standard asymptotic

convergence theorems.

We can also see that the dynamics of prices is given by q̇ = dρ̄/dt =

1∑
ci

∑
ciρ̇i where ρ̇i =

∑
(∂ρi/∂rik)ṙ

i
k. Let H i be the matrix with terms

∂ρi/∂rik. H
i = ( 1

uiK
)[∇ririu

i− ρi∇riKu
i]. We can then write the dynamics of

prices under the local Marshallian equilibrium model as

q̇ =
1∑
ci
∑

a(ci)2H i(ρi − q).(4.12)

One of the interesting features of this finding is that it is consistent with

the normative analysis of Saari and Simon (1978) in which they showed it

was necessary for an equilibrating mechanism to use information about the

Hessian ∇xxu
i in order to be stable. H i does this here.

4.4. Equivalence of Local Marshall and Local Walras

Under certain conditions, the local Walrasian and Marshallian theories

imply exactly the same dynamics. The key is the set F i, the local feasible

consumption set in the Walrasian equilibrium model. Remember, the local

theories are:

Marshall: ṙi = ci(ρi − q), ṡi = −qṙi, and q =
∑

( ci∑
cj

)ρi;

Walras: ṙi(q) ∈ argmax (uiL)(ρi−q)ṙi s.t. (ṙi,−qṙi) ∈ F i, and
∑
ṙi(q) =

0.

Case 1: Local Marshall is Local Walras

Suppose we have a local Marshallian equilibrium at t, (ṙ∗(t), q∗(t)). Let

F i = {η = (ṙi, ṡi)|ci||ρi(x∗(t)) − q∗(t)|| ≥ ||ṙi||}. This means in particular
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that there are no local income effects. Then the local Walrasian equilib-

rium is ṙi = ci(ρi(x∗(t) − q∗(t)) and q = q∗(t). Note that this does require

F (x(t)) to depend on q∗(t) and x∗(t) which is consistent with the logic of

the Appendix. But it does mean that “step size” and “equilibrium prices”

are being simultaneously determined.

Case 2: Local Walras is Local Marshall

Suppose F = {ṙi| ||ṙi|| ≤ R}, i.e. no local income effects, and we have a

local Walrasian equilibrium at t, (ṙ∗(t), q∗(t)). Then ṙ∗i = λ(ρi − q∗) where

λ||ρ∗i − q∗|| = R. Let ci = R
α||ρ∗i−q∗|| . Then the local Marshalian equilibrium

will be the same as the local Walrasian. Note that this does require ci to

depend on q∗(t) and x∗(t). But that is consistent with the model in the

Appendix.

Remark 2 Trying to tie the local versions of Marshall and Walras together

exposes the delicate nature of the “local” arguments we are trying to make.

The step sizes, F i for Walras and ci for Marshall appear ad hoc. It is our

belief that their precise sizes are not that important, in that the dynamics

will be similar in all cases. What may be different is the precise path and

whether that path favors one agent over another.

5. INTRODUCING A LAG

The Marshallian Local Theory of the previous section raises a practical

issue. Price adjustment in CDAs often occurs at a speed far beyond adjust-

ment of individual orders. By the time an agent has canceled old orders and

submitted new orders, prices may have changed a number of times. So, let

us investigate what happens if bidders are a bit slow.

ectaart.cls ver. 2006/04/11 file: decentPricing110531.tex date: June 4, 2011



17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

5.1. The Model

Slow bid adjustment would mean:

bit = qt−δ + δci(ρit−δ − qt−δ).

Continue to assume that rit = rit−δ+α(bit−qt) and that prices adjust rapidly

to the point that
∑

∆rit =
∑

[rit − rit−δ] = 0. From these we get,

rit = rit−δ + αδ[ci(ρit−δ − qt−δ)−
1

N

∑
cj(ρjt−δ − qt−δ)](5.1)

qt = (1/N)
∑

bt = qt−δ + δ(

∑
ci

N
)(ρ̄t−δ − qt−δ).(5.2)

Letting δ → 0, we get the continuous time system:

ṙi = α[ci(ρi − q)− c̄(ρ̄− q)](5.3)

q̇ = −c̄(q − ρ̄)(5.4)

Compare this to (4.7)-(4.9). First, in (4.9) prices q adjust instantaneously

to the weighted average willingness to pay ρ̄, while in (5.4) prices q converge

exponentially to ρ̄. Second, in (4.7) allocations ṙi adjust, according to the

Marshallian intuition, proportionally to the individual difference in the will-

ingness to pay and the market price. In (5.3), the Marshallian adjustment

is modulated by the difference between the average willingness to pay and

the market price. If prices adjusted immediately this last term would vanish

and we would have exactly (4.7).

Remark 3 If we think of the local Walrasian model with F i = {ηi|||ηi|| ≤
R} then the local Walrasian demand is ci(ρi−q). So one can interpret (5.4)

as indicating that prices adjust proportionally to local excess demands. That

is, (5.3) and (5.4) are the local equivalent of the global non-tatonnement

model from Section 2.
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5.2. Asymptotics

If we try to proceed as in Theorem 2, we immediately run into a problem.

With lags, dui/dt = uiK(ρi − q)ṙi = uiK(ρi − q)α[ci(ρi − q) − c̄(ρ̄ − q)] =

uiK [(ρi−q)αci(ρi−q)]−uiK [(ρi−q)αc̄(ρ̄−q)]. While the first term is positive

as long as ρi 6= q), the second term is not necessarily so. Thus it is possible

that along the dynamic path some individual utilities might decline because

of the lag in the response to prices. Thus, we cannot expect convergence to

occur in as orderly a manner as occurred in Theorem 2.

There is, nevertheless, a case of interest in which convergence to Pareto-

optimal allocations can be proven. This is the case of quasi-linear preferences

where uiK = 1 for all i. This is true, for example, for the CAPM model of

finance. There are also a lot of (experimental) data for this case.

Theorem 3 (Convergence to Pareto Optimality)

Let x(t) = [r(t), s(t)]. If (i) there are no income effects, i.e., uiK(xi) = 1

for all i and all xi ∈ X, and (ii) xi(t) > 0 for all t, then for the dynamics

in (5.3) and (5.4), [x(t), p(t)] → (x∗, p∗) where x∗ is Pareto-optimal and

e(p∗, x∗) = 0.

Proof: We use
∑
ciui as a Lyapunov function. Let κi = ci(ρi−q). Then we

can write d(
∑
ciui)/dt =

∑
ciu̇i =

∑
ci(ρi−q)ṙi = α[(

∑
κiκi)−(1/N)(

∑
κi)(

∑
κi).

By the triangle inequality, (1/N)
∑ ||κi||2 ≥ (1/N)||∑κi||2. So

∑ ||κi||2 ≥
(1/N)||∑κi||2 if κi 6= 0 for some i. Therefore, d(

∑
ciui)/dt > 0 unless

κi = 0 for all i which is true iff ρi = q for all i.

Condition (ii) is included above for technical reasons. If dui/dt ≥ 0 along

the path for all i, then (ii) wouldn’t be necessary. But when dui/dt < 0 is

possible for some i, we need to worry about x(t) hitting the boundary of

the feasible consumption set. There are standard ways to modify (5.4) to

deal with this. We do not pursue them here.

ectaart.cls ver. 2006/04/11 file: decentPricing110531.tex date: June 4, 2011



19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

Condition (i) is included because we do not have a proof of convergence

for utilities with income effects. Indeed, we believe it would be relatively

easy to construct examples where such convergence will not occur. One

could, of course, revise the model and impose a No Speculation condition

on trades that would ensure dui/dt ≥ 0. We do not do that here largely

because, as we will see below, the model as it now stands is consistent with

the data.

6. EXPERIMENTAL EVIDENCE

Here, we return to experiments. We induced quasi-linear, quadratic pref-

erences, like those underlying the Capital Asset Pricing Model (CAPM)

in finance. The Local Marshallian Theory with slow bid adjustment makes

intuitive predictions in that case, as we shall see.

6.1. Experimental Setup

Each experiment consisted of a number of independent replications, re-

ferred to as periods, of the same situation. At the beginning of a period,

subjects were endowed with a number of each of 3 securities. These secu-

rities are referred to as A, B and Notes. Subjects were also endowed with

cash, used in the trading, and perfectly substitutable for Notes. Markets in

each of the securities were available, and subjects could submit orders and

trade as they liked, during a pre-set amount of time. The trading interface

was a fully electronic (web-based) version of a CDA, whereby untraded or-

ders remained in the system (in other words, we implemented an open book

system). After markets closed, subjects were paid depending on their final

holdings of the securities, minus a fixed, pre-determined loan payment. Af-

ter payment, securities were taken away and a new period started. Subjects

kept the payments accumulated over the periods.

Subjects were not present in a centralized laboratory equipped with com-
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puter terminals, but accessed the trading platform over the internet. Com-

munication took place by email, phone and announcements through the

main experiment web page.11 In our experiments, between 30 and 42 sub-

jects participated. The larger scale ensured that a trading environment is

created that approximated the conditions of the theory: bid-ask spreads are

reduced to a minimum (one tick); still, the best ask and best bid were valid

only for small quantities.

End-of-period payments were determined using payoff functions that were

quadratic in the holdings of A and B and linear in the Notes. Subject i, when

holding hi units of the Notes, Ci cash and the vector ri of A and B received

a payoff

(6.1) Pay(i) = [ri · µ]− ai

2
[ri · Ωri] + Ci + 100hi − Li,

where Li denotes the loan payment.

In the experiments,

µ =

 230

200

 ,
and

Ω =

 10000 (+/−)3000

(+/−)3000 1400

 .
The sign of the off-diagonal elements of the matrix Ω varied. We changed

the sign after four periods. The off-diagonal elements of Ω were negative

in periods 1 through 4 in the first experiment (28 Nov 01) and positive in

periods 5 through 8. The design is reversed in the other (three) experiments:

11The interested reader can browse http://eeps3.caltech.edu/market-020528 for an

example. This web site provides the instructions for a typical experiment (the 28 May

02 experiment), the trading interface, and the announcements. To log in as observer, use

ID=1, password=a.
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the off-diagonal elements are positive in periods 1 through 4 and negative

in periods 5 through 8.

When interpreting µ as a vector of expected payoffs on securities A and B,

and Ω as the (positive definite, symmetric) matrix of payoff covariances, we

effectively induced the mean-variance preferences at the core of the CAPM

in finance. ai (> 0) measures the risk penalty (risk aversion). The treatment

(a change in off-diagonal elements of Ω) corresponds to a change in the

covariance of the (random) payoffs on A and B.

Subjects are assigned one of three levels for the parameter ai, chosen in

such a way as to generate similar pricing as in the earlier (true) CAPM ex-

periments reported in Asparouhova, Bossaerts and Plott (2000). See Table I

for details.

Each type also received a different initial allocation of A and B (nobody

received any Notes to start with, i.e., Notes were in zero net supply). Sub-

jects were not informed of each others’ payment schedules or initial holdings,

and whether these varied over the course of the experiment (they did not).

This way, subjects with knowledge of general equilibrium theory could not

possibly compute equilibrium prices. Specifically, subjects could not form

reasonably credible expectations about where prices would tend to.

All accounting was done in terms of an artificial currency, the franc. At

the end of the experiment, cumulative earnings were converted to dollars at

a pre-announced exchange rate. On average, subjects made about $45 for

the three-hour experiment; the range of payments was $0 to approximately

$150. These payments, however, inaccurately reflected the size of the in-

centives during trading. Explicit computations of the amounts of money

subjects left on the table because they did not fully optimize (and assum-

ing that they could trade at end-of-period prices) revealed values over $100

per subject/period in early periods. Some subjects were savvy enough to

realize part of these potential gains, but most didn’t (which explains the
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substantial range of payouts across subjects). As more subjects realized that

there was money to be made, their actions and the ensuing price changes

caused these amounts invariably to drop to approximately $2 in later pe-

riods. Subjects seemed not to spend the extra effort needed to extract the

last couple of dollars. This fact will be important to interpret some of the

results.

6.2. The (CAPM) Equilibrium

Translating the payoff functions into the preference functions of our the-

ory, let xi = (ri, si), where the rk are the quantities of A (k = 1) and B

(k = 2) that agent i chooses, and s is money (cash plus equivalent, namely,

payoffs on positions in Notes, minus the Loan payment). Then:

u(xi, θi) = µri − (ai/2)(ri)′Ωri + si.

Notes will be the numeraire. In this quasi-linear world (or equivalently,

in the CAPM world),

ρi =µ− aiΩri,(6.2)

ei(q, wi) =(1/ai)Ω−1(µ− q)− wi(t),(6.3)

where the excess demand vector ei now includes only the risky securities

(not the numeraire asset).

The global Walrasian equilibrium price and allocations are

q =µ− bΩw̄(6.4)

ri =(1/ai)bw̄(6.5)

where b = [
∑

(1/ai)]−1, and w̄ denotes the per-capita average endowment,

w̄ = (1/N)
∑

wi.
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The equilibrium in r is independent of individual wis because of quasi-

linearity.

In the CAPM interpretation of this economy, w̄ is referred to as the

market portfolio (of risky securities). The pricing equation (6.4) captures

the essence of the CAPM: it reveals that the market portfolio will be mean-

variance optimal. Indeed, Roll (1977) showed that a portfolio z satisfies the

following relationship for some (positive) scalar β:

(6.6) q = µ− βΩz,

if and only if z is mean-variance optimal. Notice that this is exactly the form

of the equilibrium pricing formula in (6.4), so w̄ is mean-variance optimal.

On the other hand, the choice equation (6.5) exhibits portfolio separation:

individual allocations are proportional to a common portfolio, namely, the

market portfolio w̄.

6.3. Dynamics Predictions

For the version of the Marshallian Local Theory where bid adjustment is

as fast as price adjustment (Section 4), the following obtains in the context

of linear-quadratic preferences (CAPM preferences). From Equation (4.12),

we know that q̇ = ( 1∑
ci

)
∑
α(ci)2H i(ρi−q). From (6.2), ρi−q = µ−q−aiΩri.

From (6.3), aiΩei = µ−q−aiΩri. Therefore, q̇ = ( α∑
ci

)
∑

(ci)2H iaiΩei. But

H i = aiΩ. Therefore,

(6.7) q̇ = (
α∑
ci

)
∑

(ciai)2Ω2ei[q, ri].

That is, price changes are related to weighted average Walrasian excess de-

mands through the square of the matrix Ω. As such, we expect price changes

in one security to be related not only to the security’s own excess demands,

but also to the excess demands of other securities. The relationship is de-

termined, among others, by the elements of Ω2

ectaart.cls ver. 2006/04/11 file: decentPricing110531.tex date: June 4, 2011



24

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

Regarding allocations, using (4.7) and, from (6.2), ρi− q = µ− q−aiΩri,
we get:

(6.8) ṙi = αci[µ− q − aiΩri].

Again, adjustment is driven by the matrix Ω.

When bid adjustment is slower than price adjustment (Section 5), Equa-

tions (5.3) and (5.4) take particularly interesting forms. For price dynamics,

we obtain:

(6.9) q̇ = Ω
∑

(ciai)ei(q, ri).

That is, price changes are related to (weighted) average Walrasian excess

demands through the matrix Ω (rather than the square).

Allocation dynamics take the following form:

(6.10) ṙi = −αΩ[ciairi − 1

N

∑
cjajrj] + α(ci − c̄)(µ− q).

If ci = c̄,∀i, that is all i trade with the same aggressiveness, the second

term drops out:

(6.11) ṙi = −αc̄Ω[airi − 1

N

∑
ajrj].

We now have very intuitive allocation dynamics.

To see this, consider the case where all agents start with the same initial

allocation. The expression in square brackets in (6.11) simplifies:

airi − 1

N

∑
ajrj =

(
ai − 1

N

∑
aj
)

1

N

∑
rj =

(
ai − 1

N

∑
aj
)
w̄.

Hence,

ṙi = −αc̄
(
ai − 1

N

∑
aj
)

Ωw̄.

That is, changes in holdings are a linear transformation of the per-capita

endowment (the market portfolio, in CAPM language). Except in the un-

likely event that the per capita allocation is an eigenvector of Ω, the new

holdings will not be the same anymore. Agents trade away.
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The consequences are best illustrated in a CAPM setting, where Ω is

the matrix of payoff covariances. Imagine that Ω is diagonal. The diagonal

elements of Ω are the payoff variances. In that case, volume (the absolute

value of the elements in ṙi) will be highest for the high-variance securities.

That is, most adjustments take place in the high-variance securities. The

sign of the changes in an agent’s holdings of securities depends on ai relative

to the average ((1/N)
∑
aj). Since these coefficients measure risk aversion in

a CAPM setting, this means that more risk averse agents sell risky securities

(the entries of ṙi will be negative); less risk averse agents buy. Effectively,

more risk averse agents unload risky securities, paying more attention to

the most risky securities, because that way their local gain in utility is

maximized. Likewise, less risk averse agents do what is locally optimal:

increase risk exposure by buying the most risky securities first.

When Ω is non-diagonal, the sign of the off-diagonal elements interferes

with the above dynamics. In a CAPM setting, the off-diagonal elements

equal the payoff covariances. Intuitively, when the off-diagonal elements are

negative, i.e., when the payoff covariances are negative, securities are natu-

ral hedges for each other, and the market portfolio provides diversification.

Increasing one’s risk exposure by buying mostly risky securities (or decreas-

ing one’s risk exposure by selling mostly risky securities) leads to a less

diversified portfolio, i.e., to utility losses. Maximum local gains in utility

are obtained by trading combinations of securities that are closer to the

per-capita average endowment, i.e., the market portfolio. As a consequence,

agents’ portfolios of risky securities will remain closer to the market port-

folio than if payoff covariances were zero (or positive, for that matter).

The equilibration process may not go all the way to the end. That is, equi-

librium pricing may not be fully obtained. This may happen when agents

do not perceive enough gains to cover the effort to trade. At that point,

agents will not have traded back to holdings that are proportional to the
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per-capita average endowment. In CAPM terms, portfolio separation fails.

The role of Ω in this adjustment process is crucial. If the off-diagonal

elements of Ω are positive (payoff covariances are positive), and the equi-

libration process halts before fully reaching equilibrium, then violations of

portfolio separation can be expected to be larger than if these off-diagonal

elements are negative (payoff covariances are negative).

Remark 4 Were it not for the last term in (6.10), ci and ai would not

be separately identified. So, identification will require heterogeneous aggres-

siveness across agents.

6.4. Experimental Findings

Transaction Prices

Figure 1 displays the evolution of prices of securities A (dashed line) and

B (dash-dotted line). The prices of the Notes are not shown; these are

invariably close to 100 francs, their no-arbitrage value. Each observation

corresponds to a trade in one of the three securities. The prices of the

non-trading securities is set equal to their previous trade prices. Time (in

seconds) is on the horizontal axis; Price (in francs) is on the vertical axis.

Vertical lines separate periods. Horizontal lines indicate equilibrium prices

of A (solid line) and B (dotted line). Note that their levels change after

4 periods, reflecting the change in the off-diagonal element of Ω, i.e., the

payoff covariance.

The first observation to be made about Figure 1 is that transaction prices

are almost invariably below equilibrium prices. Second, relative to equilib-

rium levels, prices generally start out lower in periods when the off-dagonal

terms of Ω are positive. In the CAPM interpretation of the experiment:

asset prices start lower when the payoff covariances are positive.
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Off-Equilibrium Price Dynamics

Table II displays results from projections of changes in transaction prices

of A and B onto the weighted sum of individual Walrasian excess demands.

Weights are given by individuals’ ais.12 The time series for each experiment

were split in two; one sub-sample covered periods with positive off-diagonal

elements for Ω; the other covered periods with negative off-diagonal ele-

ments. Only intra-period price changes were used. Estimates of slope co-

efficients of aggregate excess demands are bold-faced whenever they are

significant at the 1% level. Tests are one-sided; they compare the null hy-

pothesis that the coefficient is zero against the alternative that it is positive

(in the case of the projection coefficient of a security’s own aggregate ex-

cess demand) or has the same sign as the off-diagonal elements of Ω (in

the case of the projection coefficient of the other security’s aggregate excess

demand).

The regression R2s are small, but the F tests reveal that significance is

high. The first-order autocorrelation of the error term suggests little mis-

specification (some are significantly negative, but one expects the data to

generate a number of significant autocorrelations even if the null of no au-

tocorrelation is right).

We observe the following.

First, a security’s price change significantly and positively correlates with

its weighted aggregate excess demand. Second, the signs of the cross-effects

(partial correlation between a security’s price change and the weighted ag-

gregate excess demand in the other security) are almost always the same

as that of the off-diagonal elements in Ω (if they are not, the projection

coefficient is insignificant). The estimation results are highly significant.13

12We also ran projections with unweighted average Walrasian excess demands, but

the results are qualitatively the same.
13These results replicate the findings in Asparouhova, Bossaerts and Plott (2000)
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Table II thus suggests that the matrix of coefficients in projections of

transaction price changes onto aggregate (Walrasian) excess demands has

the same structure as Ω. A closer inspection of the table suggests that this

projection coefficient matrix not only reflects the signs of the corresponding

elements of Ω, but also their relative magnitude. For instance, the slope

coefficient of own excess demand in the projection of the price change of

security A is generally the largest; the corresponding element in Ω happens

to be largest as well.

Allocations

According to Walrasian equilibrium theory, individual holdings of A and B

should be proportional to per-capita allocations of these two securities. To

measure the extent of violations, we compute the value of holdings of A as a

proportion of the total value of holdings of A and B and compare the same

proportion if a subject were to be holding the per-capita allocations. The

absolute deviation should be zero. Table III displays the mean absolute

deviations (across subjects) based on final holdings in all periods of all

experiments. It is obvious that the theoretical prediction is not upheld.

Table III demonstrates, however, that the mean absolute deviations de-

pend on the sign of the off-diagonal elements of Ω (or the sign of the covari-

ance between the payoffs on A and B in the CAPM interpretation). This

effect emerges despite the fact that subjects started out with the same ini-

tial allocations in each period and across experiments (see Table I; the loan

and Asparouhova and Bossaerts (2009). There, quadratic preferences were indirectly

induced, through risk. In Asparouhova, Bossaerts and Plott (2000), there were two risky

securites; in Asparouhova and Bossaerts (2009), there were three. The latter setting

is particularly illuminating: Asparouhova and Bossaerts (2009) reports that the partial

correlation between changes in prices of an asset and the Walrasian excess demand of

another asset reflects the magnitude and sign of the corresponding element of the payoff

covariance matrix.
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payments do differ across experiments, but in a way that is materially ir-

relevant). Only the sign of the off-diagonal elements of Ω appear to have an

effect. Straightforward computations of standard errors (not reported) lead

one to conclude that the mean absolute deviations are always significantly

bigger in periods where the off-diagonal elements of Ω were positive than

when these elements were negative.

In the CAPM interpretation, the mean absolute deviations measure vio-

lations of portfolio separation. Such violations have been reported in CAPM

experiments before – see Bossaerts, Plott and Zame (2007). The relation-

ship with the sign of the off-diagonal elements of Ω suggests that portfolio

separation violations are worse when payoff covariances are positive.

Discussion

Let us first discuss price dynamics. The data suggest:

(6.12) q̇ = κΩ
∑

aiei[q, ri],

for some constant κ > 0. That is, prices changes are related to weighted

average Walrasian excess demands through the matrix Ω. This is consistent

with the Local Marshallian Theory with slow bid adjustments [see (6.9)]

but not with the Local Marshallian Theory with fast bid adjustment [see

(6.7)].

Second, Local Marshallian Theory with slow bid adjustments explains

how the final allocations depended on matrix Ω. If the off-diagonal elements

are positive, and the equilibration process halts before reaching equilibrium

(which it did; see Figure 1), final holdings are farther from equilibrium

predictions. Translated in CAPM language, when payoff covariances are

positive, violations of portfolio separation in eventual allocations are more

extreme.
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7. PREDICTIONS OF RELEVANCE TO FINANCE

Financial economists are mostly interested in pricing models. One class

of such models, the portfolio-based models, explain the pricing of securities

relative to some benchmark. In the CAPM, for instance, the prediction is

that all assets are priced such that the market portfolio is mean-variance

optimal, i.e., provides the maximum expected return for its risk (return

variance).

All pricing models in finance derive from equilibrium restrictions. An in-

teresting question is: can we generate similar models off equilibrium. Specif-

ically, can one identify a portfolio that continuously determines the prices

of all securities even while markets are off equilibrium?

We now argue that one can, by studying where prices converge to if we

temporarily halt the allocation process (i.e., α = 0 for a short period of

time). In the CAPM setting, prices would continue to adjust according to

(5.4). The stationary point of this system of differential equations is:

(7.1) q∗ = µ− Ω
1∑
ci
∑

ciairi.

Notice that this equation is of the same form as the one that defines mean-

variance optimal portfolios, namely, (6.6). They coincide for β = 1∑
ci

and

z =
∑
ciairi. When all ci are identical, this portfolio is the average holdings

portfolio, where each agent’s holdings are weighted by his or her coefficient

ai. In the CAPM interpretation of these coefficients, the holdings of more

risk averse agents (agents with higher ai) are weighted more heavily, and vice

versa. We will refer to the portfolio as the risk-aversion weighted endowment

portfolio, or RAWE for short. The RAWE and per-capita endowments are

closely related. If allocations are independent of preference coefficients ai,

then the two coincide. Such is the case, for instance, if all individual holdings

are proportional to the per-capita endowment, i.e., the market portfolio, as

in the CAPM equilibrium allocation.
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We can go back to our experiments and study how far the RAWE portfolio

was from mean-variance optimality after each transaction. We measure the

distance as the difference between the Sharpe ratio (at transaction prices) of

the RAWE portfolio and the maximum possible Sharpe ratio. The Sharpe

ratio is defined to be the expected return and the return variance. Expected

returns, variances and covariances are computed from the entries in µ (ex-

pected payoffs), Ω (payoff variances and covariances) and transaction prices.

In an absolute sense, it is hard to know when the distance from mean-

variance optimality is “large.” To obtain a relative sense of distance, we

normalize the distance by the maximum (observed) distance in an experi-

ment. Hence, our distance measure will be between zero and one; it equals

zero when a portfolio is mean-variance optimal; it equals one when the dis-

tance is maximal in the experiment at hand. To get a measure of how far the

markets are at any point from Walrasian (CAPM) equilibrium, we compute

the difference of the value of the market portfolio evaluated at transaction

prices and its value at CAPM equilibrium. This difference too is normalized

by the maximal observation in an experiment.14

The normalization and the comparison with the distance from equilibrium

pricing are insightful. Figure 2 displays the evolution of the distance of the

RAWE portfolio from mean-variance optimality and that of the distance

from equilibrium pricing. The contrast between the two distance measures

is often pronounced. The RAWE portfolio almost invariably moves quickly

to the mean-variance efficient frontier, confirming our prediction. Still, prices

may be far from equilibrium. The latter is more pronounced in periods when

the covariance is positive (periods 5-8 in experiment 28 Nov 01; periods 1-4

in the remaining experiments).

14Note that CAPM pricing is sufficient for the difference measure to be zero, but not

necessary.
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8. CONCLUDING COMMENTS

Previous research has shown that standard global tatonnement and non-

tatonnement are not consistent with intra-period price dynamics in CDAs.

Since CDAs are competitive only locally (i.e., for small quantities), we have

proposed a Local Marshallian Equilibrium theory here. It is equivalent to

a Local Walrasian Equilibrium theory, but our experiments shows that it

cannot explain price dynamics. Instead, Local Marshallian Equilibrium with

lagged bids is consistent with pricing data, and it explains patterns in final

holdings across treatments.

In our experiments, we induced quasi-linear, quadratic preferences in a

way that make them isomorphic with CAPM experiments. In a CAPM

setting, Local Marshallian Equilibrium identifies a portfolio that remains

(mean-variance) optimal throughout. This portfolio can be used as bench-

mark for pricing, just like the market portfolio is used as pricing bench-

mark in the CAPM (Walrasian) equilibrium. There is an opportunity here

to dispense altogether with asset pricing theory based on global equilibrium

concepts, thus providing more realism.

While the experimental findings provide solid support to our theory, they

raise many new issues that need to be addressed in future research. First,

can Local Marshallian Equilibrium with lagged bids predict pricing and

allocation dynamics in situations with income effects (unlike in our exper-

iments), such as, for instance, in Scarf’s example (Scarf (1960))? Second,

would Local Marshallian Equilibrium with lagged bids also apply to the

dynamics of bookbuilding in Call Markets (CM)? If not, this would mean

that institutions do matter; if it does, it would imply that some kind of

revelation principle applies.

The theory also needs further exploring. In particular, we need a better

understanding of ci, the parameter that controls the rate at which agent

i trades. Right now, this is treated as a constant, effectively making our
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agents myopic, unable to form expectations about future price changes. In

many contexts (including, we think, the experiments we presented here),

lack of structural information about the economy (supplies of securities;

other agents’ preferences, etc.) may make it impossible for agents to form

sensible expectations, so myopia can be defended. They are not irrational

– agents optimize, if only locally. Still, as agents acquire more information

about the economy, one can expect them to trade more aggressively, and

hence, adjust ci.

Information from past periods, for instance, could allow agents to better

calibrate price expectations, thus generating the period-by-period learning

patterns that are evident in many experimental markets. Specifically, past

price information could be readily incorporated into agents’ marginal will-

ingness to pay ρik, using arguments from Easley and Ledyard (1992). Let P̄k

be the maximum price of a trade for k in the previous day. Let P k be the

minimum such price for k. Then let ρik = P̄k if P̄k ≤ uik/u
i
s. Let ρik = P k if

P k ≥ uik/u
i
s. Otherwise, let ρik = uik/u

i
s as above. Then use our local, lagged,

Marshallian theory with this new willingness to pay function.

Finally, because the lag with which agents update their bids may vary

from agent to agent, price and quantity dynamics will depend on who is

active and who is not. Future experiments should shed light on the decision

to become active.

APPENDIX

Over the time interval [0, T ], there are T/δ periods of length δ. Trading

at the rate ∆r implies ∆u ' (ρ − q)(T/δ)(∆r) − (1/2)(T/δ)2[∆rH∆r]. If

u is quasi-linear (like in CAPM preferences) then H = −∇xxu, the Hessian

of u. If u is not quasi-linear then H is more complicated but it is positive

definite (p.d.).

If ∆r = λ(ρ−q) then ∆u ≥ 0 iff ||ρ−q||2−(1/2)(λT/δ)[(ρ−q)H(ρ−q)] ≥
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0. This is true iff λ ≤ δc∗ where c∗ = (2/T )||ρ− q||2/[(ρ− q)H(ρ− q)]. Note

that c∗ is bounded away from 0 as ||ρ − q|| → 0, since H is p.d. (In one

dimension, the bound is 1/H.) One thing this implies is the more risk averse

one is (in the CAPM interpretation of quasi-linear preferences) or the longer

T is relative to δ, the lower is c∗.

Therefore a local trader will want ∆r = a(b − q) = δc∗(ρ − q) or b =

q + δc(ρ− q).
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TABLE I

Experimental Design Data.

Exp.a Subject aib Signup Endowments Cash Loan Exchange

Cat. Reward A B Notes Repaymentc Rate

(#)d (×10−3) (franc) (franc) (franc) $/franc

28Nov01 14 2.30 125 2 8 0 400 2340 0.06

14 0.28 125 8 2 0 400 2480 0.06

14 0.15 125 2 8 0 400 2365 0.06

20Mar02 10 2.30 125 2 8 0 400 2320 0.06

10 0.28 125 8 2 0 400 2470 0.06

10 0.15 125 2 8 0 400 2370 0.06

24Apr02 14 2.30 125 2 8 0 400 2320 0.06

13 0.28 125 8 2 0 400 2470 0.06

13 0.15 125 2 8 0 400 2370 0.06

28 May02 13 2.30 125 2 8 0 400 2320 0.06

12 0.28 125 8 2 0 400 2470 0.06

12 0.15 125 2 8 0 400 2370 0.06

Footnotes to Table I.

a Date of experiment.

b Coefficient ai in the payoff function (6.1).

c Coefficient Ln in the payoff function (6.1).

d Number per subject type.
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Footnotes to Table II.

a Sign of the off-diagonal element of the matrix Ω. The OLS coefficient

matrix evidently inherits the structure of this matrix.

b OLS projections of transaction price changes onto (i) an intercept, (ii) the

weighted sum of Walrasian excess demands for the two risky securities (A

and B). Each individual excess demand is weighted by the coefficient ai.

Time advances whenever one of the three assets trades. Boldfaced coeffi-

cients are significant at the 1% level using a one-sided test (effect of own

excess demand is positive; cross-effect has the same sign as the correspond-

ing covariance). Standard errors in parentheses.

c p-level in parentheses.

d Number of observations.

e Autocorrelation of the error term; ∗ and ∗∗ indicate significance at the 5%

and 1% level, respectively.

ectaart.cls ver. 2006/04/11 file: decentPricing110531.tex date: June 4, 2011



42

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

TABLE III

Mean Absolute Deviations Of Individual Portfolio Weights From Market

Portfolio Weights

Experiment Periods Signa Period

1 or 5 2 or 6 3 or 7 4 or 8

28Nov01 1-4 − 0.15b 0.14 0.12 0.12

(0.02)c (0.02) (0.02) (0.02)

5-8 + 0.24 0.25 0.23 0.26

(0.03) (0.03) (0.03) (0.03)

20Mar02 1-4 + 0.24 0.26 0.24 0.25

(0.03) (0.03) (0.03) (0.03)

5-8 − 0.13 0.11 0.13 0.11

(0.02) (0.02) (0.03) (0.02)

24Apr02 1-4 + 0.25 0.26 0.25 0.25

(0.02) (0.02) (0.02) (0.03)

5-8 − 0.17 0.12 0.10 0.09

(0.02) (0.01) (0.01) (0.01)

28May02 1-4 + 0.24 0.27 0.22 0.22

(0.03) (0.02) (0.02) (0.03)

5-8 − 0.17 0.15 0.10 0.10

(0.02) (0.02) (0.02) (0.02)
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Footnotes to Table III.

a Sign of the off-diagonal element of the matrix Ω. The mean absolute

deviation of final holdings from per-capita average holdings is significantly

larger when this sign is positive.

b Average absolute difference between (i) the proportion individuals invest

in A relative to total franc investment in securities A and B, and (ii) the

corresponding weight in the per-capita holdings of A; weights are computed

on the basis of end-of-period prices and holdings.

c Standard error in parentheses.

ectaart.cls ver. 2006/04/11 file: decentPricing110531.tex date: June 4, 2011



44

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
160

180

200

220

240

28 Nov 01

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
160

180

200

220

240

20 Mar 02

0 1000 2000 3000 4000 5000 6000 7000 8000
160

180

200

220

240

24 Apr 02

0 1000 2000 3000 4000 5000 6000 7000 8000
160

180

200

220

240

28 May 02

Figure 1.— Evolution of transaction prices of securities A [dashed line] and

B [dash-dotted line]. Horizontal lines indicate equilibrium price levels [A: solid

line; B: dotted line]. Time (in seconds) on horizontal axis; prices (in francs) on

vertical axis. Vertical lines delineate periods.
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Figure 2.— Evolution of (i) distance of the RAWE (weighted average hold-

ing) portfolio from (mean-variance) optimality [dotted line; distance based on

Sharpe ratios]; (ii) distance of prices from Walrasian equilibrium [solid line; dis-

tance based on the value of the average endowment portfolio]. Differences are

scaled so that maximum difference in an experiment = 1. Time (in seconds) on

horizontal axis; difference on vertical axis. Vertical lines delineate periods.
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