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Abstract 
 

Models of adverse selection risk generally assume that market makers offset expected 
losses to informed traders with expected gains from the uninformed.  We recognize that the 
expected loss captures a combination of two effects: 1) the probability that some traders have 
private information, and 2) the likely magnitude of that information.  We use a maximum-
likelihood approach to separately estimate the probability and the magnitude of private 
information and test our procedure on a simulated data set.  We then estimate the parameters for 
NYSE-listed stocks from 1993 through 2003, and show that our estimates can be used to predict 
future extreme returns.  Finally, we examine the time-series and cross-sectional properties of the 
probability and magnitude of information and find a decline in the frequency of private 
information events following the introduction of Regulation FD.  Our results shed light on the 
price discovery process and have implications for many areas of finance. 
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1. Introduction 

Liquidity suppliers in securities markets are always aware that other traders may have 

better information.  This idea, which was first formalized in seminal work by Kyle (1985) and 

Glosten and Milgrom (1985), has spurred an extensive theoretical and empirical literature 

devoted to quantifying adverse selection risk.  Kyle (1985) modeled the behavior of a single 

market maker who sets a “break-even” price based on the net combined order flow of informed 

and uninformed traders.  The equilibrium price allows the market maker to offset expected losses 

to the informed trader with expected gains from the uninformed.  Thus, the price impact is a 

function of the degree of asymmetric information in the market and provides an indication of the 

expected loss to the informed trader.  Glosten and Milgrom (1985) consider a slightly different 

setting but rely on the same basic tradeoff between gains from uninformed and losses to better 

informed traders. 

Liquidity suppliers’ expected loss to informed traders has been measured empirically in a 

variety of ways.  The most easily observable metrics are quoted and effective spreads.  (The 

effective spread is a simple variant of the quoted spread that accounts for the fact that trades may 

occur at prices inside or outside the quotes.)  Although the effective spread stems purely from 

asymmetric information in the Glosten and Milgrom (1985) model, empirical studies have shown 

that spreads may also reflect other types of costs, like order processing and inventory risk.  

Several authors have developed approaches to estimating the information component of the 

effective spread by isolating the permanent impact of each trade.1  An alternative method of 

separating the transitory effects from the expected loss to informed traders is to simply measure 

                                                 
1 See, for example, Roll (1984), Glosten and Harris (1988), Stoll (1989), George, Kaul, and Nimalendran (1991), 
Hasbrouck (1991), Lin, Sanger, and Booth (1995), and Huang and Stoll (1997) for models that decompose effective 
spreads. 
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the aggregate price impact over time intervals that encompass several trades, as in Breen, 

Hodrick, and Korajczyk (2002), among others. 

We recognize that each of these measures of expected loss captures a combination of two 

effects: 1) the probability that some traders have private information, and 2) the likely magnitude 

of that information.  The extant literature has focused primarily on the combined effect, rather 

than the probability and the magnitude separately.  The notable exception is a model developed 

by Easley, Kiefer, O’Hara, and Paperman (1996).2  Although their model is most often used to 

estimate the probability that a particular trader is informed (PIN), PIN is simply a function of the 

underlying parameters in their model, which include the probability that some traders receive a 

private signal (i.e., the probability of a private information event).  Easley et al. (1996) do not 

estimate the magnitude of private information, nor do they consider the relation between the 

probability of an information event and the expected loss to informed traders. 

Separate consideration of the probability and the magnitude of private information leads 

to a variety of insights regarding adverse selection risk and the way information is incorporated 

into prices.  For example, suppose Firm A has frequent private information events with little 

value impact, whereas Firm B has infrequent private information events with large value impact.  

Although the two firms may have similar expected losses to informed traders, differences 

between the probability of an information event and the magnitude of that event lead to different 

predictions regarding the return patterns of Firms A and B.  In particular, firms with a low 

probability of information events will have more return reversals, while firms with a high 

probability of information events will have more continuations. 

                                                 
2 Bernhardt and Hughson (2002) provide a model where information events arrive before each trade with 
probability γ, and are publicly revealed following each trade.  In their empirical estimation they assume γ=1, but 
they also assume informed traders randomly choose to be informed, so there are some individual trades that have no 
information component.  
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We propose a simple model that formalizes this idea.  We then develop a method for 

separately estimating the components of the expected loss to informed traders.  We test our 

estimation procedure using a simulated data set, and then estimate the probability and the 

magnitude of private information for NYSE-listed stocks using rolling one-year windows from 

1993 through 2003.  We demonstrate that our parameter estimates can be used to predict the 

probability of future extreme overnight returns.  This not only offers additional evidence of the 

validity of our approach, but also has implications for option pricing, risk management, and 

corporate finance.   

Finally, we examine the time series and cross-sectional properties of our estimates of the 

probability and magnitude of information events.  We find a positive relation between firm size 

and adverse selection costs in our sample that is driven by the higher frequency of information 

events for larger firms.  We also find that adverse selection risk is related to past volatility – not 

because private information events are more frequent for firms with more volatile overall stock 

returns, but because events tend to be larger in magnitude for these firms.  We further show that 

the probability of information events declined dramatically in late 2000, the period 

corresponding to the implementation of the SEC’s Regulation FD (Fair Disclosure).  We also 

find that the positive relation between the probability of private information events and firm size 

is attenuated in the period following Regulation FD.  Together, these results suggest that 

Regulation FD had the intended result of reducing the flow of private information, especially for 

large firms.3

 

                                                 
3 This finding is consistent with Eleswarapu, Thompson, and Venkataraman, (2004) but inconsistent with Sidhu, 
Smith and Whaley (2005). 



 5

2. Model 

We begin the discussion of our model with an example.  Consider a simple setting in 

which informed and uninformed traders trade each stock at prices set by a single competitive 

market maker.  The market maker knows that Firm A is likely to have a private information 

event, but does not know with certainty whether an event has actually occurred.  Thus, he moves 

the price in response to order flow to reflect the expected value of the information event.  This 

expectation includes the possibility of no event, so if the market maker subsequently learns that a 

private information event did in fact take place (which is generally the case for Firm A), he will 

incorporate the full impact of the private information, usually resulting in a small price 

continuation.  On the few occasions that an event does not occur, the market maker will 

subsequently learn that he was reacting to order flow that was entirely composed of liquidity 

traders, so he will completely reverse the previous price response.   

In contrast, Firm B has high information risk but little realized informed trading, so the 

price impact serves as protection against large events that rarely occur.  Consequently, in most 

cases, the market maker will reverse the original price impact after learning that the prior 

period’s trading was not information-motivated.  In the rare cases when information events do 

occur, the initial price response to the order flow will tend to be too small, because it was based 

on the market maker’s low ex-ante probability.  Thus, there will tend to be relatively large price 

continuations in the following period. 

We now formalize the intuition in this illustrative example.  Each period in our model 

resembles the single-period Kyle (1985) model, in which a market maker sets a price upon 

observing the net combined order flow from a single informed trader and uninformed traders.  

We assume that the single trading period in the Kyle model corresponds to one trading day 
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because this is the interval we will use when estimating the model’s parameters in Section 4.  

(Our model does not require any specific assumption about the length of the period.)4  We 

further assume that the true value of the private signal is revealed before trading on the following 

day.  Our setting differs from the Kyle model in that the informed trader receives a private signal 

on day t with probability α, and only trades if such a private information event has occurred.  

Thus, the market maker faces uncertainty as to whether the total order imbalance originated from 

uninformed traders alone or from both the uninformed and informed traders.  In the Kyle (1985) 

model, α  = 1, so the net order always reflects the orders of both the informed and uninformed.   

In our model, the informed trader’s private signal is not the only channel of information 

about the value of the stock.  We also allow for public news arrival, both during the day (denoted 

rpd,t) and after the close of trading (the “overnight” public return, denoted rpo,t).  These returns are 

normally distributed with mean zero and variance, σpd
2 and σpo

2, and they are independent of all 

other random variables in the model.  Public news is simultaneously observed by all market 

participants; therefore, public information is not impounded into prices through order flow and 

has no effect on the informed trader’s strategy.  The public information shocks do not add any 

new insights to our model, but we include them because they are important for the estimation of 

the parameters.  Without the publicly-observed shocks, our maximum likelihood procedure 

would be forced to attribute all of the price volatility to private information. 

Our model can be described as follows.  As in the Kyle model, the net order from the 

uninformed traders, ut, is normally distributed with mean zero and variance σu
2, and is 

independent of all other random variables in the model, including the net order from the 

informed trader, xt.  The risk-neutral market maker’s response to the total order imbalance, yt, is 

                                                 
4 The impact of different timing assumptions on our estimates is examined in Section 3.3. 
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measured as a return, ry,t, and is assumed to be linear with slope λ (i.e., ry,t = λyt).  Note that Kyle 

(1985) defines λ as the dollar change in share price (per share of order imbalance), while we 

measure λ as the percentage change in share price (per share of order imbalance).  Here again, 

our motivation is empirical rather than theoretical.  We will be estimating our parameters over 

one year, and we believe that public and private information shocks are more likely to be 

stationary in percentage terms than in dollar terms.  We measure both intra-day and overnight 

returns as price changes (plus distributions) divided by the quote midpoint at the start of the day, 

so the full-day return between two successive opening quotes is just the sum of the intra-day and 

overnight returns. 

As in Kyle (1985), the informed trader chooses xt to maximize expected profit given the 

private signal and given the market maker’s assumed response.  Each day, with probability α the 

informed trader receives a private signal, ri,t, that is normally distributed with mean zero and 

variance σi
2; ri,t = 0 with probability (1-α).  ri,t is independent of both the uninformed volume on 

day t and any public information.  Given the market maker’s response, the informed trader’s 

optimal strategy is to choose xt = ri,t /(2λ); thus, if an event occurs, xt ~ N(0,σi
2/(4λ2)), as in Kyle 

(1985).  On non-event days, xt  = 0.   

We assume that the market maker chooses λ so that his expected profit is zero.  The 

market maker’s expected profit is ptE[yt(ry,t –ri,t)], where ry,t =λyt, pt is the pre-trade price, and ri,t 

represents the informed trader’s private signal.  In the appendix, we show that this expected 

profit equals zero when   

λ = (1/2)α1/2(σi/σu)         (1) 

Note that when events occur every day, α  = 1 and expression (1) reduces to that given in Kyle 

(1985), with one modification.  Because of our different definition of λ, our expression includes 
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σi, the standard deviation of the return (proportional price impact) associated with the private 

information event.  In contrast, Kyle’s expression for λ contains Σ0
1/2, which is the standard 

deviation of the dollar per share impact of the private information event. 

When events do not occur every day, our setup differs from Kyle’s in that the linear 

pricing rule shown in equation (1) does not provide zero profits conditioned on the order flow.  

Specifically, smaller values of yt will be more common on days with no private information 

event, so the adjustment given in (1) will be too large (the market maker will have positive 

conditional expected profit).  Similarly, on days with large yt, it is more likely that an 

information event has occurred so the market maker’s conditional expected profit will be 

negative.5  We believe, however, that our assumed linear pricing rule is reasonable given the 

NYSE specialist’s affirmative obligation to maintain a “fair and orderly market.”  This obligation 

may impose costs on the specialist during times of large order imbalances that may be recouped 

on days with less extreme imbalances.6   

Also note that rearranging equation (1) yields 

λσu = (1/2)α1/2(σi)  

The left hand side of this equation is the price impact associated with one standard deviation of 

uninformed order flow.  This price impact is the cost borne by the uninformed traders.  The right 

hand side expresses this cost as a function of the two components that are the focus of this paper: 

the probability of information events (α) and their likely magnitude (σi).  One of our empirical 

questions, addressed later in the paper, is whether there are substantial differences in the relative 

importance of these components across firms.  

                                                 
5 See Spiegel and Subramanyam (2000). 
6 Our assumption is consistent with Hansch, Naik, and Viswanathan’s (1999) finding that market makers on the 
London Stock Exchange make money on small trades and lose money on larger trades. 
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The daily sequence of events in our model can be summarized as follows: 

1. Public (intraday) news, rpd,t, arrives.  

2. The informed trader receives a private signal, ri,t, with probability α. 

3. Uninformed traders submit a net order, ut.  The informed trader submits an order, xt.  

(If ri,t = 0, then xt = 0.)  The market maker observes the net combined order flow, yt = 

ut + xt, and determines the price change using ry,t =λyt.  Trade occurs.  The return 

from the opening quote midpoint to the closing quote midpoint is rd,t = rpd,t + ry,t. 

4. Public (overnight) news, rpo,t, arrives. 

5. The private signal observed at the start of the trading day, ri,t, becomes public.  The 

return from the closing quote midpoint on day t to the opening quote midpoint on 

day t+1 is ro,t = rpo,t + ri,t – ry,t , which includes the difference between the true signal 

on day t and the market maker’s response to the order imbalance that day. 

The total return from the opening quote midpoint on day t to the opening quote midpoint 

on day t+1 is: 

rt = rd,t + ro,t = (rpd,t + ry,t) + (rpo,t + ri,t – ry,t) = ri,t +  rpd,t +  rpo,t  (2) 

 

3. The frequency of reversals 

It is clear that our model will generate returns that will be a mixture of distributions, 

mixing days with events and days without events.  What may be less clear is that our model also 

generates particular patterns in adjacent intraday and overnight returns, with sign reversals being 

far more common for firms with low levels of α.  The maximum likelihood procedure uses all of 

these features of the return distributions.  Before describing our procedure in detail, we discuss 

the intuition behind the relation between α and the frequency of reversals, where reversals are 
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defined as cases where the trade imbalance, yt, and the subsequent overnight return, ro,t, have 

opposite signs.   

In our simple model, there are no costs of order processing and no compensation for 

dealer inventory, so the price-impact return, ry,t =λyt, stems solely from adverse selection risk.  

On 1-α of the days the market maker learns that no event occurred (i.e., ri,t = 0), so he fully 

reverses the initial price impact.  In these cases the overnight return, ro,t, is more likely to have 

the opposite sign of the imbalance, yt.  (When no event occurs, ro,t  and yt will have the opposite 

signs unless the public overnight return, rpo,t, is large and has the same sign as ry,t.)  In contrast, 

on α of the days the market maker learns that a private information event did occur, and in these 

cases he will generally move the next day’s opening price in the same direction as yt because he 

does not fully incorporate the effect of the private information on the first day.7  Thus, firms with 

high probabilities of information events (α) will have fewer reversals than firms with low α’s.8  

To illustrate more concretely the relation between the frequency of private information 

events, α, and the frequency of reversals, we simulate a data set and examine its properties.  In 

the simulations, we let α assume ten different values (0.05, 0.10, 0.15, 0.20, 0.25, 0.35, 0.45, 

0.55, 0.65, and 0.85), and we let the standard deviation of the informed trader’s signal, σi, range 

from 0.02 to 0.10 in increments of 0.02.  The volatility of the intraday public information, σpd, is 

fixed at 0.02, and the volatility of overnight public information is set to 0.01, both of which are 

approximately equal to the average estimated values from the NYSE data described in Section 

                                                 
7 When an event occurs, ro,t will have the same sign as yt unless (a) the overnight public return is large and has the 
opposite sign of the imbalance, or (b) ut (the uninformed part of the order imbalance) is large and has the same sign 
as xt (the informed order). 
8 In our model, as in the single-period Kyle (1985) model, approximately half of the private information is 
incorporated into the security price as a result of the informed trading, and the remainder is incorporated when the 
event becomes public.  If the informed trader were allowed to trade multiple times throughout the day, and the 
market maker could update his estimate of the probability that an information event took place by observing the 
order flow in each trading interval, the reversal effect would be reduced.   In Section 3.3, we simulate a model with 
two rounds of trade to investigate the impact of this alternative assumption on our estimates.   
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4.3.  These parameter values yield 50 different combinations of α and σi.  Each combination is 

viewed as a separate “firm.”  For each firm, we generate 500 years of daily data (252 

observations/year).  Total daily returns are determined according to equation (2), using the 

simulated private signals to generate informed order flow.9

The results in Table 1 demonstrate the relation between reversal frequencies and α and σi.  

Reversal frequencies are computed as the fraction of observations for which the imbalance and 

the overnight return have opposite signs.  The table demonstrates that reversal frequencies are 

generally decreasing in α, as expected.  Not surprisingly, the pattern is most pronounced for high 

values of σi because when the magnitude of private information is small, its effect on returns is 

more easily swamped by the public component.  For a given α, reversal frequencies are 

increasing in σi for exactly the same reason.  The relation is not quite monotone in α, because for 

very small values of α, the price response to order flow is very small, so although it is nearly 

always reversed (for roughly 1-α of the observations), these small reversals are swamped by the 

overnight public information. 

Llorente et al. (2002) also look at probabilities of return reversals, but in a different 

context.  They model risk-averse investors who trade either for hedging or speculative purposes.  

The relative importance of these two motives determines whether returns will exhibit reversals 

(because hedging trades dominate) or continuations (because speculative trades dominate). 

In contrast, in our model investors are risk-neutral, so there is no hedging motive for trade.  

Instead, the uncertainty regarding the occurrence of information events, coupled with the 

                                                 
9 The parameter σu, which is the standard deviation of uniformed order flow, does not affect the return pattern, 
because the informed trader’s intensity is adjusted to match it.  As a result, the informed trader’s impact on prices is 
only a function of σi and α, and the pattern in returns is only a function of σi, α, σpd, and σpo. 
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specialist’s positive obligation to maintain fair and orderly markets, leads to underreaction 

(continuations) or overreaction to order flow (reversals).  

 

4. Estimating α, σi, σpd, and σpo

Our maximum likelihood approach uses the information in the full sequence of returns 

and order imbalances to estimate α and σi, as well as σpd, σpo, and σu.  Intuitively, two features of 

the data allow separate identification of α and σi:  

• Reversals between order flow and overnight returns (as illustrated in Table 1) 

• Kurtosis in the return distribution (specifically, days with information events have 

higher return variance) 

The maximum likelihood approach uses the fact that conditioned on whether there has 

been a private information event, the three variables yt, rd,t, and ro,t are jointly normally 

distributed.  In the appendix, we derive conditional variance/covariance matrices as functions of 

the parameters α, σi, σpd, σpo, and σu.10  The unconditional density for yt, rd,t, and ro,t is obtained 

by weighting the two conditional densities by (1-α) and α, respectively.  The parameter 

estimates are obtained by maximizing the following log-likelihood function: 
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  (3) 

where fn and fe are the conditional, multivariate normal densities on day t assuming no event 

occurs and an event occurs, respectively. 

 
10  Although our model shares some features with that of Bernhardt and Hughson (2002), our empirical estimation 
procedure is quite different.  One obvious difference is that they estimate their model trade-by-trade, whereas we use 
aggregate intraday and overnight periods.  More importantly, they use unsigned trade volumes.  In contrast, our use 
of signed trade volumes allows us to exploit the conditional covariances between trade volumes and price changes 
illustrated in Table 1. 
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4.1. Estimates from simulated data 

Before proceeding with our analysis, we test the accuracy of our estimation procedure on 

the simulated data set described in Section 3.  We maximize the likelihood function in equation 

(3) for each firm year, restricting the estimates of α, σi, σpd, and σpo to lie between 0.00001 and 1.  

Although the standard deviations could theoretically exceed 1, it would imply that one-day 

returns often exceed ±100%.  Furthermore, the true σi values range from 0.02 to 0.10.  The 

maximum likelihood estimation procedure converges to a boundary for 0.4% of the firm years.  

Results for the remaining observations are summarized in Tables 2 and 3.11   

Table 2 compares the α estimates to the true values.  The estimates appear to be 

unbiased, and the precision (true value/standard deviation of estimates) is increasing in both α 

and σi.  The results for the σi estimates in Table 3 are similar.  These estimates are unbiased, and 

the precision is increasing in σi and increasing in α for all but the smallest value of σi.  The fact 

that the precision is tied to the values of α and σi is not surprising.  Attempting to separately 

estimate the probability and the magnitude of private information has little value when virtually 

no information arrives through order flow (i.e., when α and σi are small). 

 

4.2. The effect of different timing 

Our model and estimation procedures assume that private information events arrive each 

day, and that the private information becomes public at the end of each trading day.  

Furthermore, the model assumes that the day’s trading is well-approximated by the one-round 

version of Kyle (1985).  In this subsection, we investigate the sensitivity of the estimates to these 

                                                 
11 The α estimates equal 1 for another 0.2% of the observations.  We do not omit these observations, as α = 1 is 
simply the standard Kyle (1988) model.   
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two assumptions by simulating data from alternative models with different timing assumptions 

and then applying our estimation procedure to the simulated data.  Thus, in this subsection, the 

assumptions underlying the estimates are inconsistent with the process that generates the data.  

Our purpose is to investigate the sensitivity of our estimates to these alternative timing 

assumptions.  

In our first alternative model, we assume that private information events become public 

after two days, giving the informed investor two opportunities to trade based on his or her private 

signal.  In this alternative model there can be two private information events “active” during a 

day – one observed at the start of the current day and another observed at the start of the previous 

day.  We assume that different informed traders observe each of these signals.  The quote 

midpoint is set to the expected value based on public information at the start of each day, and 

informed traders are risk neutral, so each can ignore the possible presence of the other informed 

trader when determining their optimal trade.  In our second alternative model, information events 

last only one day, but there are two rounds of trading during each day.  

In developing our alternative models, we are interested in isolating the importance of the 

particular timing assumption, so we try to maintain as much similarity as possible to our original 

model.  Information events still arrive at the start of each day with probability α and their 

magnitude is normally distributed with standard deviation σi.  We continue to assume that the 

market maker follows a linear pricing rule, and in each round of trading we assume that the 

informed trader uses a trading strategy that is linear in the difference between the current quote 

midpoint (which is equal to the expected value based on all public information) and his or her 

updated expected value. 
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In both alternative models the informed traders trade twice based on their signal.  The 

second time they trade, their decision is the same as in Kyle (1985): their optimal order is equal 

to the difference between their updated estimate of the value and the quote midpoint multiplied 

by 1/(2λ).  In the first round of trade, we limit the informed trader to a linear strategy for 

analytical tractability, and we solve numerically for the optimal trade intensity parameter. 

In the first alternative model, we assume that the market maker updates the quote 

midpoint at the start of each day to reflect the new expected value of the asset based on the 

observed total order flow.  The market maker observes the public revelation of the private 

information event two days prior (if an event occurred), so he can calculate the part of the past 

day’s volume due to that earlier event.  The remainder of yesterday’s volume must be from the 

uninformed traders and from potential informed trading associated with an event that occurred 

yesterday that is not yet public.  In the second alternative model, the market maker faces a 

similar updating problem in the middle of each day, after the first round of trading. 

The potential equilibria in our alternative models are characterized by three parameters: 

the market maker’s price response (λ) and the informed traders’ optimal trading intensity in each 

round (β1 and β2).  We define a combination of these three parameters to be an equilibrium if the 

following conditions are satisfied: 

• The market maker’s expected profit is zero 

• β2=1/(2λ) 

• The market maker conjectures that the informed traders use β1 as their trading 

intensity in the first period and updates quote midpoints based on this conjecture. 

Given this, it is in fact optimal for the informed traders to use this same intensity 

in the first period (i.e., the conjecture is borne out). 
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For each combination of α and σi, we solve numerically for the equilibrium values of λ, β1 and 

β2.  In order to estimate the necessary expected values, we simulate 500,000 trading days 

(approximately 2,000 years) of information events and uninformed volumes, and we consider 

various combinations of the parameters, using the average values of market maker and informed 

trader profits as proxies for expected values.  We start by choosing a trial value of λ.  For each 

given λ, we select an initial estimate for the market maker’s conjectured value of β1 and then 

find the actual value that maximizes the average informed trader profit.  The more sensitive the 

market maker to order flow, the more that aggressive trading by the informed trader in the first 

period reduces the opportunity for profitable trade in the second period.  Accordingly, the higher 

the market maker’s conjectured value of β1, the lower the informed trader’s optimal choice, and 

there is a point where the two values coincide.  For each given λ, we find this equilibrium value 

of β1 (at which the conjectured value and optimal choice coincide), and then we search over λ to 

find the level that drives the average market maker profit to zero. 

For each combination of α and σi used in Tables 1 through 3, we find the equilibrium 

values for λ, β1 and β2, and simulate 500 years of daily data using these values.  We then apply 

our estimation procedure to these simulated data.  Table 4 shows the result of this exercise using 

the alternative model with information events that last two days.  Not surprisingly, the estimated 

values of α are higher than the true values, because the impact of each information event is 

spread across two days.  Importantly, the biases in the estimates of α are not strongly related to 

the level of σi.  Table 5 shows the results using the alternative model with two rounds of trading 

during the day.  In this case, the estimates are reasonably close to the true values, with the 

exception of the lowest values of α.  Again, the biases are not strongly related to the level of σi.
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In summary, the above simulation results suggest that even if the true timing of 

information events and rounds of trading differ from the one-day assumption in our model, one 

can still reasonably compare the estimates of α and σi across firms.  Of course, this conclusion is 

subject to the caveat that the timing be similar across the firms being compared.  For example, 

suppose firms of types X and Y have similar levels of α, but firms of type X tend to have two 

days between the private and public observation of information events, whereas firms of type Y 

have just one day.  In this case, firms of type X will have higher estimated α's than firms of type 

Y. 

 

4.3. Estimates from actual data 

We now apply our estimation method to a sample of NYSE-listed stocks.  We consider 

40 overlapping one-year time windows, starting each January, April, July, and October.  The first 

window covers the period from January-December 1993, and the final window covers the period 

from October 2002-September 2003.12  In each one-year time window, we include all common 

stocks from the CRSP database that are listed on the NYSE over the entire period, with no 

symbol or CUSIP changes, no stock splits or other unusual distributions, and no cash dividends 

in excess of 10% of the ex-dividend stock price.  We also eliminate any stocks where the 

company has multiple issues included in CRSP.   

For each stock we collect intraday trade and quote data from the TAQ database.  We sign 

each trade using the Lee and Ready (1991) algorithm, aligning trades with the most recent 

NYSE-quote that has been in effect for at least 5 seconds.  We measure the share imbalance 

using all NYSE trades reported between the open and the close, except those greater than 10,000 

                                                 
12 We exclude the one-year window ending in December 2003 because in Section 4 we use our estimates to predict 
extreme returns for the next quarter. 
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shares.13  Each day, we also measure quote midpoint returns from the open to the close and from 

the close to the next day’s open, adjusting overnight returns for dividends using data from CRSP.   

Our model focuses on firm-specific news, so we purge market-wide components from 

both intraday and overnight returns by running daily cross-sectional regressions of each return 

measure on a constant, historical beta (based on the previous 5 years of monthly returns), the 

natural logarithm of market capitalization, and the natural logarithm of the book-to-market ratio. 

These independent variables are motivated by Fama and French (1992, 1993), and all are 

measured as of the start of the one-year estimation window.14  The residuals from these 

regressions become our estimates of rd,t and ro,t.   

Similarly, the price impact measure in our model captures each stock’s price change in 

response to unexpected trade imbalance.  Imbalance has been shown to be persistent [Chordia 

and Subrahmanyam (2004)], and subject to market-wide factors, so after scaling imbalance by 

the number of shares outstanding, we run daily cross-sectional regressions on a constant, the 

previous day’s imbalance, and market capitalization [see Corwin and Lipson (2005)].  The 

residuals from these regressions become our estimates of yt. 

As in the simulations, we omit firm years that converge to a boundary (3% of the 

sample)15.  We also omit firm years with fewer than 200 days with non-missing data or whose 

numerical estimates failed to converge (0.2% of the sample).  Mean α and σi estimates across the 

                                                 
13 We eliminate trades of over 10,000 shares to reduce the impact of very large transactions that are likely to be 
uninformed, liquidity trades. 
14 Prior to taking logs, we impose minimum and maximum values for the book-to-market ratio of 0.017 and 3.13, 
respectively.  These cutoffs are approximately equal to the cutoffs used by Fama and French (1992) for the last year 
of their sample. They impose these cutoffs (particularly the lower bound) to avoid extreme values after taking logs.  
Unlike Fama and French (1992), we do not discard observations with negative book values.  Instead, we set the 
book-to-market ratio equal to one (so the natural logarithm is zero) and include a separate dummy variable in each 
regression that identifies these firms. 
15 50% of these are cases where σpo converged to the lower boundary (0.00001), and 41% are cases where α and/or 
σi converged to the lower boundary (also 0.00001), so the estimated adverse selection is essentially zero.  The results 
of our empirical tests are similar when all boundary observations are included. 



 19

remaining 50,770 firm-year observations are 0.44 and 0.02, respectively.  The mean intraday 

public information parameter, σpd, is 0.02, more than double the average value of the overnight 

public information parameter, σpo, of 0.008.  Additional summary statistics on the estimates of 

α and σi are presented in Table 6. The table displays mean α estimates for each decile of the α 

distribution.  Average α’s range from 0.038 for the lowest decile to 0.964 for the highest decile.  

For each α decile, Table 6 also shows average σi estimates and quintiles of the σi distribution.  α 

and σi appear to be negatively related, but there is substantial dispersion in the σi estimates 

within each α decile.  The results suggest that the way information is incorporated into prices 

varies across firms – for example, via frequent small events (high α and low σi) versus rare large 

events (low α and high σi) – indicating that the decomposition of the expected loss to informed 

traders into the probability and the magnitude of private information is a useful exercise.  In 

Section 6, we further examine time-series and cross-sectional properties of the parameter 

estimates.   

 

5. Predictions for future extreme returns 

We have tested the validity of our estimation procedure using simulations, but it would 

also be helpful to confirm that the empirical estimates behave as expected.  One way to do so is 

to examine the relation between the estimates of α, σi, σpd, and σpo and future extreme returns.  

Intuitively, the probability of an extreme return will be concave in α.  When α is very low, 

information events almost never occur, so returns are approximately normally distributed.  

Likewise, for very high levels of α, events occur nearly every day, so the distribution of the daily 

return is also approximately normal.  For intermediate levels of α, daily returns will follow a 

truer mixture of normal distributions, increasing the likelihood of extreme outcomes.   
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In addition, firms with high values of σi (relative to σpd and σpo) are more likely to 

experience extreme returns.  In our model, returns due to public information are normally 

distributed and, therefore, will rarely be extreme.  In contrast, the infrequent arrival of private 

information events can generate extreme returns.  The larger the magnitude of this “lumpy” 

private information relative to the “smooth” public information, the more extreme the event. 

We test whether extreme returns in the next quarter can be predicted using estimates of α, 

σi, σpd and σpo from the current year.  This analysis not only validates our empirical estimates, but 

also has implications for areas of finance like risk management, option pricing, and corporate 

finance, in which the ability to predict extreme outcomes is valuable.  

Let rqmax represent the maximum absolute daily excess return (rt = rd,t + ro,t) over the 

quarter following the current year, and let σr equal the robust standard deviation of daily excess 

returns over the current year.  Robust standard deviations are computed as the 68.27th percentile 

of the return distribution.  

We define three different levels of extreme events: en=1 if rqmax > nσr for n∈{4,5,6}.  We 

let Pn represent the true probability that en=1 and Pn
est(α,σi,σpd,σpo) represent the predicted 

probability that en=1 given our estimates of α, σi, σpd, and σpo.  The probability that the maximum 

absolute return will be above nσr is equal to one minus the probability that all of the observations 

will be below nσr.  The probability that a single day’s return will be below nσr depends on 

whether an event has occurred.  If Q is the number of trading days in the quarter, then 

Q( , , , ) 1 Pr{ }est
n i pd po t rP rα σ σ σ σ= − ≤ n             (4) 

where    

( )( ) ( ) ( )( )2 2 2 2 2Pr{ } 1 2 1 1 2t r r i pd po r pd por n n nσ α σ σ σ σ α σ σ σ≤ = − Φ − + + + − − Φ − +  
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and Φ(•) is the standard normal cumulative distribution function. 

We estimate probit regressions to test the ability of our model to predict which firms will 

experience extreme returns over the coming quarter.  We start with the 48,326 observations used 

in Table 6 and delete 69 observations for which there are no good returns in the following 

quarter.  We are particularly interested in the ability of the model to capture the possibility of 

extreme returns when they have not yet occurred (exploiting the price sensitivity to order flow 

and subsequent reversals), so we exclude 6,375 observations where the maximum absolute daily 

return during the estimation year was more than 10 times the robust standard deviation.   

We estimate three different specifications.  The first specification includes only an 

intercept and the predicted probability: 

((1 , , ,est
n n i pdP a b P α σ σ σ−⎡= Φ + Φ⎣ ))po

⎤
⎦

tr ⎤⎦

      (5) 

Note that if the predicted probability of an extreme return using our estimates is equal to 

the actual probability, then the intercept, a, will be zero and the slope, b, will be one.  The second 

and third specifications add control variables to equation (5).  The first control variable, which is 

used in both the second and third specifications, is an estimate of the probability of extreme 

returns that uses only the historical open-to-open return distribution.  Open-to-open returns are 

assumed to come from a mixture of two normal distributions with different standard deviations; 

thus, the likelihood function for open-to-open returns has the following form: 

( ) ( ) ( )1 2 1 2
1

( , , ) ln ; 1 ;
N

t
t

L rα σ σ α σ α σ
=

⎡= Φ + − Φ⎣∑     (6) 

where Φ(r;σ) is the normal CDF, with standard deviation σ, evaluated at r.  This mixture-

of-normals assumption is consistent with our model, in which open-to-open returns are normally 

distributed with variance equal to σ1=σi
2+σpd

2+σpo
2 on days with information events (with 
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probability α) and variance equal to σ2 =σpd
2+σpo

2 on days with no information events.  In 

contrast to our model-based estimates, this mixture-of-distributions approach ignores the 

additional information contained in the order imbalance data and it ignores the conditional 

covariances between intraday and overnight returns.  The mixture-of-distributions approach is 

more flexible than our model-based approach for predicting extreme returns, because it 

implicitly allows some of the information events to be publicly observed, whereas our model 

assumes all heteroskedasticity in daily returns results from private information events.  We 

maximize the likelihood function in equation (6) to produce estimates for the mixing parameter 

(which corresponds to α in our model) and the estimates for the two standard deviations.  We 

then use an approach analogous to equation (4) to calculate the probabilities of extreme events, 

Pn
mix, and add Φ-1(Pn

mix) to the probit specification shown in equation (5).  

The third specification for the probit model adds several more control variables that 

reflect the shape of the tails of the return distribution during the estimation period.  Specifically, 

we include the ratio of the sample standard deviation to the robust standard deviation, as well as 

the fraction of days during the estimation period in which the absolute return exceeded three, 

four, five, six, or seven robust standard deviations.  These six variables are designed to test the 

degree to which the predicted probabilities, based either on our model or on the mixture-of-

distributions approach, act as proxies for particular features of the return distribution from the 

estimation period.   

We are also concerned that both our model-based estimates and the mixture of 

distribution estimates may be picking up heteroskedasticity in the return distribution that is due 

to time variation in the level of volatility.  Firms that had an increase in volatility late in the 

sample may be more likely to have relatively large returns (compared to the full year standard 
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deviation) over the coming quarter.  Thus, we include a control variable equal to the ratio of the 

sample standard deviation of daily returns for the final month of the estimation interval to the 

sample standard deviation for the full estimation period. 

The results are reported in Table 7.  The coefficients on our model-based predicted 

probability are positive and statistically significant for all specifications, meaning an increase in 

the predicted probability of an extreme event using our estimated parameters is associated with a 

higher frequency of realized extreme events in the coming quarter.  The fact that these 

coefficients are different from one (and the intercept terms are non-zero) suggests that our 

predicted probabilities do not match the observed probabilities.  The coefficients on the 

probability estimates based on the mixture-of-distributions model are also positive and 

significant for 5- and 6-σ events, but are somewhat sensitive to the inclusion of the remaining 

control variables.  The fact that the mixture-of-distributions approach provides information 

beyond our model-based estimates may indicate that there is also heteroskedasticity in the 

publicly-observed components of returns, as this is not captured by our model.  The shape of the 

return distribution over the estimation period also matters to some extent, and the significant 

coefficient on the ratio of recent volatility to total volatility for the year is evidence of persistence 

in the volatility of returns.   

We test the robustness of the results in Table 7 in several ways.  We describe the results 

of each of these tests, focusing on the coefficients on the predicted probabilities.  (To conserve 

space, we do not include separate tables.)  First, we estimate the three specifications without 

transforming the predicted probabilities using the inverse of the Normal CDF.  These tests yield 

positive and statistically significant coefficients on our model-based probability in all cases.  We 

also use the sample standard deviation instead of our robust standard deviation to define the 
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extreme return cutoffs for the both the dependent and control variables, and the results are 

qualitatively similar to those shown in Table 7, but the coefficients on the predicted probabilities 

tend to have smaller magnitudes than those reported in the table.  Finally, we run the tests 

including the observations with an absolute return greater than ten times the robust standard 

deviation during the estimation year.  Again, the results are similar to those in Table 7, with 

slightly smaller coefficients on our model-based probabilities. 

The results in Table 7 demonstrate that our estimates of α, σi, σpo, and σpo yield a statistic 

that can be used to predict future extreme returns.  Together with the simulation results, this 

confirms the validity of our estimation procedure.  In addition, the ability to predict extreme 

outcomes is valuable in option pricing and risk management.  The question as to whether the 

predicted probability from our model has power above and beyond other possible measures (e.g., 

the implied volatilities from traded options) remains an open question for future research. 

 

6. Time series and cross-sectional variation in α and σi

Having demonstrated that our estimates of the probability (α) and magnitude (σi) of 

private information are reasonable, we now analyze how the estimates vary over time and across 

firms.  Knowledge of the types of firms or time periods for which α's or σi’s are high or low will 

deepen our understanding of the way in which information is incorporated into prices.  This 

knowledge can then be applied in many different areas of finance.  For example, changes in a 

given firm’s α and/or σi may be useful in predicting corporate events such as takeovers.  

Moreover, α and σi may have an impact on the type of market structure that best suits particular 

firms.   
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To examine the time-series properties of our estimates, we run panel data regressions of 

our estimates of α and σi on time dummies, allowing for firm-level random effects.  The 

estimated coefficients from these regressions are plotted in Figure 1.16  As shown in Panel A, α 

was fairly volatile in the mid- to late-1990’s, and then experienced a dramatic drop-off beginning 

in 2000.  This drastic decrease in the latter half of the sample may be related to Regulation FD, 

enacted by the Securities and Exchange Commission in October 2000.  Reg FD was designed to 

reduce the selective disclosure of information to certain individuals and mandates that firms 

publicly disclose material information.  Introduction of the rule may have reduced the degree of 

information asymmetry, particularly the kind of signals that would be received one day by an 

informed trader and publicly revealed the next.17  Although existing studies have documented 

changes in market maker and trader behavior surrounding reductions in tick size, we see no 

consistent patterns in the α estimates surrounding the decrease to sixteenths in June 1997 or to 

decimals in January 2001.18  

Panel B of Figure 1 illustrates the time trend in σi.  There was a marked increase in the 

magnitude of private information from 1995 through 2000, perhaps simply due to an increase in 

total volatility over the period.  Like α, σi declined following Reg FD, which suggests that the 

regulatory change may have reduced both the frequency and the magnitude of private 

information events.  The fact that σi remains higher in the post-FD period than during the 1990’s 

could again reflect higher total volatility after 2000.  

                                                 
16 Intervals are centered around the observation date.  For example, 1998 includes the four one-year windows 
beginning between July 1997 and June 1998. 
17 Eleswarapu, Thompson, and Venkataraman (2004) find that information asymmetry costs declined following the 
implementation of Reg FD.  Our results suggest this decline was related to a decline in the frequency of information 
events. 
18 See, for example, Goldstein and Kavajecz (2000), Jones and Lipson (2001), and Bacidore, Battalio, and Jennings 
(2003). 
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The fact that both α and σi are likely related to total volatility makes interpreting the 

graphs in Panels A and B of Figure 1 more difficult.  As the uncertainty about the value of a firm 

increases, one would expect increases in the volatilities of both publicly- and privately-observed 

signals.  This suggests that the fraction of total volatility that stems from private information 

events, measured as σ
σα i  , may provide a way to examine differences in the information 

environment while controlling for the overall level of firm volatility.  The sharp decrease in the 

fraction of total volatility that stems from private information events surrounding Reg FD (Panel 

C), to levels below those in the 1990’s, suggests that there was indeed a shift of information from 

private to public channels during this period. 

Before concluding the discussion of the changes in estimates surrounding Reg FD, it is 

important to point out that there were other events occurring in the same time frame that 

probably resulted in substantial changes to the information environment.  This period saw a 

dramatic decline in valuations of technology stocks and a dramatic decline in the frequency and 

size of acquisitions.  There were also other important legal and regulatory events during this 

period, including prosecution of several major investment banks resulting from the actions of 

their stock analysts, and the U.S. SEC’s passage of new auditor independence rules.  In light of 

these events, it may be inappropriate to attribute changes in our estimates during this period 

solely to Reg FD.     

Next, we analyze how the probability (α) and magnitude (σi) of private information relate 

to underlying firm characteristics.  Our cross-sectional analysis proceeds in three steps.  First, we 

use economic reasoning to identify candidate explanatory variables.  Note that, in general, we do 

not have explicit predictions as to how α and σi vary cross-sectionally.  Accordingly, the results 
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in this section do not constitute tests of a specific theory, but rather, provide the first indication 

of how these new measures of private information relate to observable firm characteristics. 

Second, for each explanatory variable, we group the observations by decile and examine 

plots of the averages of the α ‘s and σi’s relative to the average firm characteristic for each 

decile.  In some cases, we transform the explanatory variable so that the relation between the 

explanatory variable and the average estimates is approximately linear.  For example, we use a 

logarithmic transformation for market capitalization.  Finally, guided by the patterns in these 

plots, we perform multivariate panel data regressions. 

A number of factors have the potential to impact firms’ α ‘s and σi’s.  Larger firms may 

be more stable and predictable, and information may become public quickly for these firms, 

suggesting that both the probability and magnitude of private information events will be lower 

for larger firms.  Likewise, smaller, less established firms may have higher α ‘s and σi’s because 

these companies are changing rapidly.  On the other hand, information production may be 

limited for smaller firms, reducing the frequency with which information is incorporated into 

prices and lowering α.  (The effect on σi is unclear.)  Finally, because decision making is more 

dispersed in larger firms, it may be more difficult to control information leakage, suggesting 

more frequent private information events. 

These hypotheses suggest that analyst following, industry group, and spending on 

research and development may also have an impact on α and σi.  Firms with greater analyst 

following may have increased information production, potentially increasing α, but the fact that 

this information will be made public more quickly suggests that both α and σi may be reduced.  

Innovative firms’ efforts to keep new technologies private could lead to large, infrequent private 

information events.  If these firms tend to spend more on research and development, we would 
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expect a negative relation between R&D and α, and a positive relation between R&D and σi.  

Furthermore, if these firms are concentrated within particular industries, we may also see 

variation in α and σi across industry groups.   

Financial strength may also affect the magnitude of information events.  Unhealthy firms 

may face a greater risk of extreme corporate events like bankruptcies, takeover attempts, or 

restructurings, and firms that are performing extremely well may be more likely to experience 

extreme events like acquisitions or announcements of major new product lines.  This suggests 

that α and σi may be related to measures of solvency and past performance like debt-to-equity 

ratio, past return, and book-to-market ratio.  α and σi may also be positively related to trading 

activity, as higher trading volume may signal greater divergence of opinion. 

Because in many cases we do not have clear priors as to the functional form, or even the 

direction, of the relation between α and σi and the firm characteristics discussed above, we begin 

by creating plots to determine how the estimates vary with each factor.  For each one-year 

window, we divide the sample into deciles based on the value of each firm characteristic 

independently.  Then we pool the sample (across all years), and for each decile, we graph the 

average values of α and σi against the average value of the given firm attribute.   Although they 

are not shown to conserve space, we also create plots for σ
σα i , and we comment on how 

they compare to the graphs for α and σi. 

Firm characteristics are calculated using data from the Center for Research in Securities 

Prices (CRSP), COMPUSTAT, and I/B/E/S databases.  Firm size is computed as the natural 

logarithm of the product of stock price and shares outstanding (in millions) as of the end of the 

one-year estimation window.  Book-to-market and debt-equity ratios are computed using book 
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values from the most recently reported quarter (also as of the end of the estimation interval).  We 

also obtain R&D from the most recent quarterly report and scale it by firm size.  Unfortunately, 

R&D is missing for over half of the observations in our sample and is reported as zero for 

another fifteen percent of the observations.  We use the first two digits of the COMPUSTAT SIC 

code to sort firms into ten industry groups: durables, nondurables, utilities, energy, construction, 

business equipment, manufacturing, transportation, financial, and business services.  Past 

performance is captured by the excess return (relative to the S&P 500) over the prior six months, 

and trading activity is measured as the average monthly trading volume over the past twelve 

months scaled by the total shares outstanding.  Volatility is measured using both the monthly 

standard deviation computed over the prior 60 months and the equity beta (estimated from a 

monthly market model regression over the same period) to examine differences in systematic and 

total risk.  Analyst following is computed as the number of analysts reporting annual earnings 

estimates as of the most recent summary date in I/B/E/S prior to the end of the estimation 

interval.  To control for the strong positive correlation between analyst following and firm size, 

we regress the natural logarithm of (1+number of analysts) on the natural logarithm of market 

capitalization and use the residuals as our measure.  Adding one to the number of analysts allows 

us to compute the measure for firms with no analyst following.   

Graphs of α and σi are presented in Figure 2.  Panel A shows that α is clearly increasing 

in firm size.  This is consistent with the hypothesis that larger firms have greater production of 

private information and/or with the hypothesis that it is more difficult for large firms to control 

information leakage.  In contrast, σi is decreasing in firm size, suggesting that large firms 

experience smaller events.  The fraction of total volatility due to private information events (not 
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reported) is increasing across firm size deciles, indicating that the higher σi for small firms may 

simply be a reflection of the higher total variability of these firms.   

Panel B shows that σi (like σ
σα i  , which is not reported) is generally increasing in 

analyst following.  In contrast, α is slightly lower for firms with unusually low or unusually high 

analyst following compared to other firms their size, but α is fairly constant across the middle 

deciles.  The absence of a strong trend is perhaps not surprising given the complexity of the 

relation between the number of analysts providing earnings estimates and firms’ information 

environment.  A firm may be followed by many analysts because it is a highly visible firm and 

coverage is expected or because public information is readily available and easy to analyze.  

Firms that provide analysts with inside information also may have a large number of analysts, 

either because the analysts are attracted to such a firm or because a large number of analysts 

cause increasing pressure for such disclosure.  On the other hand, such firms may give 

preferential access to a small number of analysts, which might ultimately decrease the number of 

analysts as others recognize their efforts would be at a serious disadvantage.  Finally, as pointed 

out by Sidhu, Smith, and Whaley (2005), simultaneously disclosing private information to a 

large number of analysts may have the same effect as public disclosure because when many 

traders share private information they trade very aggressively and the price impact is nearly 

immediate.    

Not surprisingly, σi is increasing in both historical volatility and beta.  In contrast, the 

relations between α (and σ
σα i  , not reported) and these measures are not consistently 

positive, and there is a clear negative relation between α and historical volatility.  As expected, 

firms with extreme book-to-market ratios (Panel F) and firms that experienced either very low or 
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very high returns over the past six months (Panel H) appear to have more extreme events.  

Furthermore, these events are less frequent for firms with extreme past returns.  (The graph of 

σ
σα i  versus book-to-market is similar to that for α, while the graph versus past return 

resembles that for σi .)  The magnitude is generally larger for more actively-traded firms (Panel 

G).  There is no clear relation between the parameter estimates and debt-to-equity ratio (Panel 

E).  Likewise, no clear patterns emerge in the plots of α and σi versus R&D, which are not 

reported due to the large fraction of missing values.  Finally, there is little variation across 

industries (also not reported), but utilities have a higher average α  and lower average σi than 

firms in other industries. 

The plots in Figure 2 have the advantage that they do not require ex-ante specification of 

the functional form, but their disadvantage is that they do not allow simultaneous consideration 

of multiple explanatory variables.  In our multivariate regressions, we use the plots in Figure 2 to 

guide our choice of variables and functional forms. 

We include logged firm size, adjusted analyst following, volatility, beta, debt-to-equity 

ratio, and turnover as explanatory variables in our regressions.  Due to non-linearities apparent in 

the graphs, we use two dummy variables to capture book-to-market ratio – one for the lowest 

book-to-market decile and one for the highest decile – and we take the absolute value of the 

return over the past six months before including it as a regressor.  Because R&D is missing for 

many observations in our sample and did not show any clear patterns (perhaps due to the small 

sample size), we omit this variable from the regressions.  Finally, we add industry dummies, 

along with time dummies for each of the forty periods in our sample.  

We run separate panel data regressions for the probability, α, and magnitude, σi, of 

private information events, as well as for the fraction of total volatility that is driven by private 
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information events, σ
σα i .  We allow for correlation in the error terms for each firm over 

time.  Because our observation intervals are overlapping (one-year windows rolling quarter-by-

quarter), we model the error structure to include an additional covariance term for observations 

for the same firm that cover periods beginning within three quarters of one another. 

The regression results are presented in Table 8.  The results for σ
σα i  demonstrate 

that firms’ return variability tends to be driven less by private information in some industries 

than in others.  The fraction of total volatility that stems from private information events is 

significantly lower for durables, energy, and financial firms relative to the other firms in the 

sample.  This is in spite of the higher probability of information events for energy firms, so the 

lower magnitude of private information has a more dominant effect.  Larger firms are more 

likely to have private information events, and these events tend to make up a greater portion of 

total volatility.  Likewise, higher analyst following indicates a greater frequency of private 

information events.   

In contrast to the univariate plots in Figure 2, both α and σi increase with historical 

volatility, and α also increases with beta.  Firms with book-to-market ratios in the highest decile 

tend to have both more frequent and larger private information events that make up a greater 

fraction of total volatility.  High book-to-market ratios may indicate depressed stock prices, 

perhaps related to financial distress.  As in Figure 2, if a firm’s total return over the past six 

months has been either very low or very high, the firm is less likely to experience a private 

information event in the current period but, if it does, it will tend to be larger in magnitude.  

Finally, more actively traded firms tend to have larger but less frequent private information 

events. 
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Collectively, the results in Figures 1 and 2 and Table 8 reveal important insights about 

asymmetric information that would be unobservable when focusing only on measures of 

expected loss.  For example, we find a positive relation between firm size and the fraction of 

volatility due to private information events that is driven by a higher frequency of information 

events for larger firms.  This result is consistent with the hypothesis that it is more difficult for 

larger firms to control information leakage.  If Reg FD made firms more willing to spend 

resources to control information leakage, then this could be one reason for the decrease in α in 

the latter part of the sample (Figure 1), and one might expect that the effect would be stronger for 

the larger firms in the sample.  We examine this hypothesis in Figure 3, which reproduces the 

graphs for market capitalization in Figure 2 (Panel A) separately for the pre- and post-FD 

periods.  One-year intervals ending before October 2000 fall into the pre-FD period, and 

intervals beginning after October 2000 are labeled post-FD.  (Intervals that span both periods are 

omitted from the graphs in Figure 3.)   

The results in Panel A of Figure 3 demonstrate that α declined across all firm sizes 

following Reg FD and that this decrease is, in fact, less pronounced for the smallest deciles.  

Interestingly, σi increased in the post-FD period for many firm-size deciles (Panel B), but as we 

saw in Figure 2, this is due to an increase in total volatility in the latter part of the sample period.  

The results in Panel C of Figure 3 confirm that the fraction of volatility stemming from private 

information events decreased substantially after Reg FD, especially for large firms.  Panel D 

shows that while estimated total volatility increased in the post-FD period, the proportional 

increase was similar across the firm-size deciles.  The patterns in Figure 3 are consistent with the 

hypothesis that larger firms had more information leakage in the pre-FD period, and because Reg 
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FD increased the scrutiny on this leakage, these firms show a larger decline in the fraction of 

total volatility stemming from private information events.     

 

7. Conclusion 

In the existing literature, adverse selection risk is typically measured on a single 

dimension, based on the anticipated loss to informed traders.  Many studies examine the 

determinants of this expected loss – as captured empirically by spreads, price impact measures, 

and adverse selection components – and find that these measures vary across firms and over 

time.  While this work is clearly instructive, we recognize that measures of the expected loss 

capture a combination of two effects: 1) the probability of a private information event, and 2) the 

likely magnitude of the information.  We develop a method of separately estimating the 

probability and the magnitude of private information using returns and trade imbalances. 

We validate our estimation procedure using a simulated data set, and then estimate these 

parameters for NYSE-listed stocks from 1993 through 2003.  We show that our parameter 

estimates can be used to predict future extreme returns, which not only offers additional evidence 

of the validity of our estimates, but also has implications for option pricing, risk management, 

and corporate finance.  Finally, we examine the time series properties of the probability and 

magnitude of information. 

Our work suggests that focusing only on the expected loss to informed traders provides 

an incomplete picture, as firms with similar expected losses can have markedly different 

probabilities and magnitudes of private information events.  For example, we find a positive 

relation between firm size and adverse selection cost in our sample that is driven by the higher 

frequency of information events for larger firms.  In contrast, we find that past volatility is 
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related to adverse selection risk primarily because private information events tend to be larger for 

firms with more volatile overall stock returns, not because events are more frequent for these 

firms.  

We also show that the probability and magnitude of information events declined 

dramatically in late 2000, which corresponds to the implementation of the SEC’s Regulation FD.  

We find that the positive relation between firm size and the fraction of total return volatility that 

stems from  private information is attenuated in the period following Regulation FD.  Together, 

these results suggest that Regulation FD had the intended result of reducing the flow of private 

information from firms to analysts. 

In summary, we believe that the ability to separately estimate the probability and the 

magnitude of private information events will yield many other applications that are important to 

investors, regulators, and researchers.  For example, changes in α and σi may be useful in 

predicting corporate events such as takeovers.  More generally, analyzing α and σi independently 

helps to clarify the distinction between the risk of informed trading and the degree of realized 

informed trading, deepening our understanding of the price discovery process.  
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Figure 1: Time Trends in Estimates of α, σi , and σ
σα i  

 

Panels A through C plot coefficients from panel data regressions of α, σi, and σ
σα i , respectively, 

on time dummies, allowing for firm-level random effects. 
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Panel C: The Fraction of Estimated Volatility Due to Private Information Events 
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Figure 2: Parameter Estimates and Firm Characteristics 

For each one-year estimation window, we assign each observation to a decile based on a particular 
characteristic.  We then pool the sample and plot the average α and σi estimates for each decile versus the 
average value of the given characteristic.  In some cases, we transform the characteristic so that its 
relation with the average estimates is approximately linear. 
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Figure 2 (continued) 

Panel C: Average Estimates by Volatility Decile 
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Panel D: Average Estimates by Equity Beta Decile 
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Panel E: Average Estimates by Debt-to-Equity Ratio Decile 
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Figure 2 (continued) 

Panel F: Average Estimates by Book-to-Market Decile 
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Panel G: Average Estimates by Turnover Decile 
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Panel H: Average Estimates by Past 6-Month Return Decile 
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Figure 3:  Average Estimates by Market Capitalization, Pre- and Post-Reg FD 
 
For each one-year estimation window, we assign each observation to a decile based on market 
capitalization.  We then average the estimates for each decile in the pre-FD sample and in the post-FD 
sample.  We plot these averages against each decile’s average of the natural logarithm of market 
capitalization (in millions) across the full sample period. O’s represent pre-FD averages, and +’s denote 
post-FD averages.  α is the fraction of days with an information event, σi is the standard deviation of the 

information events, the volatility ratio is
 σ

σα i , and σ is the total standard deviation including public 

signals.  
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Table 1: α and the Frequency of Reversals 

We simulate 500 years of daily data (500 x 252 = 126,000 trading days) for 50 different combinations of 
α and σι parameters.  For each set of parameter values, the reversal frequency is the fraction of days 
where yt and ro,t have opposite signs. 

 
 True σi values 
True α values 0.020 0.040 0.060 0.080 0.100 

0.05 0.555 0.614 0.660 0.704 0.735 
0.10 0.571 0.634 0.689 0.728 0.761 
0.15 0.574 0.642 0.695 0.730 0.758 
0.20 0.575 0.644 0.694 0.725 0.749 
0.25 0.574 0.639 0.687 0.713 0.735 
0.35 0.571 0.629 0.666 0.686 0.701 
0.45 0.564 0.608 0.641 0.658 0.670 
0.55 0.551 0.593 0.612 0.630 0.639 
0.65 0.543 0.570 0.589 0.599 0.603 
0.85 0.519 0.529 0.539 0.542 0.544 
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Table 2: α Estimates from Simulated Data 

We simulate 500 years of daily data (500 x 252 = 126,000 trading days) for 50 different combinations of 
α and σι parameters.  For each year of data, α and σi are estimated by maximizing the likelihood function 
in equation (3) subject to the constraints that the estimates lie between 0.00001 and 1.  For each pair of 
true α and σi values, the table reports the average of the α estimates across the 500 years.  The standard 
deviation of the α estimates across the 500 years is shown in parentheses. 

 
 True σi values 
True α values 0.020 0.040 0.060 0.080 0.100 

0.05 0.053 
(0.029) 

0.052 
(0.020) 

0.051 
(0.017) 

0.051 
(0.016) 

0.051 
(0.015) 

0.10 0.105 
(0.041) 

0.102 
(0.030) 

0.101 
(0.025) 

0.101 
(0.022) 

0.099 
(0.020) 

0.15 0.156 
(0.053) 

0.151 
(0.035) 

0.150 
(0.029) 

0.150 
(0.025) 

0.151 
(0.025) 

0.20 0.212 
(0.058) 

0.200 
(0.040) 

0.203 
(0.034) 

0.199 
(0.029) 

0.200 
(0.027) 

0.25 0.263 
(0.070) 

0.254 
(0.047) 

0.247 
(0.037) 

0.249 
(0.032) 

0.249 
(0.030) 

0.35 0.350 
(0.082) 

0.353 
(0.053) 

0.347 
(0.043) 

0.349 
(0.037) 

0.348 
(0.034) 

0.45 0.454 
(0.088) 

0.451 
(0.059) 

0.449 
(0.047) 

0.450 
(0.041) 

0.451 
(0.037) 

0.55 0.561 
(0.096) 

0.548 
(0.059) 

0.547 
(0.048) 

0.543 
(0.045) 

0.546 
(0.044) 

0.65 0.649 
(0.103) 

0.651 
(0.068) 

0.642 
(0.051) 

0.644 
(0.044) 

0.650 
(0.041) 

0.85 0.835 
(0.119) 

0.841 
(0.069) 

0.840 
(0.053) 

0.842 
(0.051) 

0.844 
(0.040) 
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Table 3: σi Estimates from Simulated Data 

We simulate 500 years of daily data (500 x 252 = 126,000 trading days) for 50 different combinations of 
α and σi parameters.  For each year of data, α and σi are estimated by maximizing the likelihood function 
in equation (3) subject to the constraints that the estimates lie between 0.00001 and 1.  For each pair of 
true α and σi values, the table reports the average of the σi estimates across the 500 years.  The standard 
deviation of the σi estimates across the 500 years is shown in parentheses. 

 
 True σi values 
True α values 0.020 0.040 0.060 0.080 0.100 

0.05 0.021 
(0.007) 

0.042 
(0.010) 

0.063 
(0.014) 

0.083 
(0.015) 

0.103 
(0.018) 

0.10 0.021 
(0.006) 

0.041 
(0.007) 

0.061 
(0.008) 

0.081 
(0.010) 

0.102 
(0.012) 

0.15 0.021 
(0.007) 

0.040 
(0.005) 

0.061 
(0.007) 

0.081 
(0.008) 

0.101 
(0.009) 

0.20 0.020 
(0.008) 

0.040 
(0.005) 

0.060 
(0.006) 

0.081 
(0.007) 

0.101 
(0.008) 

0.25 0.021 
(0.008) 

0.040 
(0.004) 

0.060 
(0.005) 

0.081 
(0.006) 

0.100 
(0.007) 

0.35 0.021 
(0.009) 

0.040 
(0.004) 

0.060 
(0.005) 

0.080 
(0.005) 

0.100 
(0.006) 

0.45 0.021 
(0.010) 

0.040 
(0.004) 

0.060 
(0.005) 

0.080 
(0.005) 

0.100 
(0.006) 

0.55 0.022 
(0.011) 

0.040 
(0.004) 

0.060 
(0.004) 

0.080 
(0.005) 

0.100 
(0.006) 

0.65 0.022 
(0.012) 

0.040 
(0.004) 

0.060 
(0.004) 

0.080 
(0.005) 

0.100 
(0.005) 

0.85 0.023 
(0.014) 

0.040 
(0.003) 

0.060 
(0.004) 

0.080 
(0.005) 

0.099 
(0.005) 
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Table 4: α and σi Estimates from Simulated Data in Which Information Events Last Two 
Days 

 
We use a model in which the information events lasts two days, and we simulate 500 years of daily data 
(500 x 252 = 126,000 trading days) for 50 different combinations of α and σi parameters.  We then use 
our estimation procedure, which assumes the information events last one day, to estimate the parameters.  
For each year of data, α and σi are estimated by maximizing the likelihood function in equation (3) 
subject to the constraints that the estimates lie between 0.00001 and 1.  For each pair of true α and σi 
values, Panel A reports the average of the yearly α estimates and Panel B reports the average of the yearly 
σi estimates.   

 
 True σi values 
True α values 0.020 0.040 0.060 0.080 0.100 

 
Panel A: Average of α Estimates

0.05 0.071 0.067 0.065 0.068 0.068 
0.10 0.143 0.139 0.149 0.156 0.161 
0.15 0.222 0.234 0.248 0.255 0.262 
0.20 0.304 0.327 0.347 0.357 0.369 
0.25 0.398 0.451 0.453 0.472 0.481 
0.35 0.584 0.672 0.692 0.694 0.696 
0.45 0.742 0.858 0.870 0.861 0.867 
0.55 0.851 0.929 0.943 0.940 0.940 
0.65 0.895 0.957 0.962 0.966 0.964 
0.85 0.956 0.976 0.979 0.979 0.980 

                   
Panel B: Average of σi Estimates

0.05 0.018 0.036 0.051 0.067 0.082 
0.10 0.017 0.031 0.044 0.058 0.071 
0.15 0.016 0.028 0.041 0.054 0.066 
0.20 0.015 0.027 0.039 0.051 0.063 
0.25 0.017 0.025 0.038 0.050 0.062 
0.35 0.015 0.025 0.037 0.050 0.062 
0.45 0.022 0.026 0.038 0.052 0.065 
0.55 0.021 0.028 0.041 0.056 0.070 
0.65 0.025 0.030 0.045 0.061 0.076 
0.85 0.020 0.034 0.052 0.071 0.089 

 



 48

Table 5: α and σi Estimates from Simulated Data in Which There Are Two Rounds of 
Trading Each Day 

 
We use a model with two rounds of informed trading during the day and simulate 500 years of daily data 
(500 x 252 = 126,000 trading days) for 50 different combinations of α and σi parameters.  We then use 
our estimation procedure, which assumes a single round of trading, to estimate the parameters.  For each 
year of data, α and σi are estimated by maximizing the likelihood function in equation (3) subject to the 
constraints that the estimates lie between 0.00001 and 1.  For each pair of true α and σi values, Panel A 
reports the average of the yearly a estimates and Panel B reports the average of the yearly σi estimates.   

 
 True σi values 
True α values 0.020 0.040 0.060 0.080 0.100 
                     

Panel A: Average of α Estimates
0.05 0.079 0.082 0.084 0.085 0.086 
0.10 0.111 0.110 0.110 0.105 0.108 
0.15 0.174 0.164 0.165 0.163 0.165 
0.20 0.238 0.227 0.222 0.219 0.220 
0.25 0.306 0.287 0.278 0.276 0.276 
0.35 0.426 0.399 0.389 0.387 0.383 
0.45 0.535 0.499 0.491 0.484 0.486 
0.55 0.641 0.603 0.589 0.586 0.580 
0.65 0.759 0.706 0.682 0.677 0.677 
0.85 0.907 0.895 0.876 0.867 0.858 

                     
Panel B: Average of σi Estimates

0.05 0.011 0.023 0.036 0.050 0.062 
0.10 0.019 0.036 0.054 0.073 0.091 
0.15 0.019 0.037 0.056 0.075 0.094 
0.20 0.020 0.038 0.057 0.077 0.095 
0.25 0.020 0.038 0.058 0.078 0.098 
0.35 0.021 0.039 0.060 0.080 0.101 
0.45 0.021 0.040 0.060 0.082 0.102 
0.55 0.022 0.040 0.061 0.082 0.104 
0.65 0.023 0.040 0.061 0.083 0.104 
0.85 0.024 0.040 0.060 0.082 0.105 
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Table 6: α and σi Estimates from NYSE Data 

α and σi are estimated by maximizing the likelihood function in equation (3) using rolling one-year 
windows (beginning in January, April, July, and October) from 1993 through 2003, subject to the 
constraints that the estimates lie between 0.00001 and 1.  For each decile of α estimates, the table presents 
mean α and σi estimates, along with quintiles of the σi distribution.   
 

  σi estimates 
α estimates 

Decile Mean  
20th 

percentile 
40th 

percentile 
 

Mean 
60th 

percentile 
80th 

percentile 
1 0.038  0.007 0.023 0.065 0.067 0.112 
2 0.110  0.005 0.011 0.028 0.025 0.049 
3 0.183  0.006 0.011 0.021 0.020 0.034 
4 0.265  0.007 0.013 0.019 0.019 0.028 
5 0.357  0.008 0.012 0.017 0.017 0.023 
6 0.458  0.008 0.012 0.015 0.015 0.021 
7 0.567  0.008 0.010 0.013 0.013 0.017 
8 0.685  0.007 0.009 0.012 0.012 0.015 
9 0.819  0.006 0.008 0.010 0.010 0.013 

10 0.964  0.005 0.006 0.008 0.008 0.011 
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Table 7: Probit Regressions of Actual Extreme Events on Predicted Frequencies 

Actual extreme events (en=1) occur when  rqmax > nσr for n∈{4,5,6}, where rqmax is the maximum absolute 
daily market-adjusted return over the quarter following the current year, and σo is the robust standard 
deviation of daily market-adjusted returns over the current year.  Pn

est is the predicted probability that  
en=1 from our model given the estimated parameter values (α,σi,σpd,σpo). Pn

mix  is the predicted probability 
that  en=1 from the mixture of distributions model.  Φ-1(•), is the inverse of the standard normal 
cumulative distribution function.  Marginal values for the coefficients on the variables related to Pn

est and 
Pn

mix are shown in square brackets and p-values for all coefficients are shown in parentheses.   
 
Explanatory 
Variable 

rqmax > 4σo rqmax > 5σo rqmax > 6σo

Intercept 0.137 
(0.000) 

0.142 
(0.000) 

0.124 
(0.589) 

-0.023 
(0.308)

-0.056 
(0.026)

-0.248 
(0.286)

-0.172 
(0.000) 

-0.250 
(0.000)

-1.062 
(0.000)

Φ-1(Pn
est) 0.267 

[0.549] 
(0.000) 

0.271 
[0.558] 
(0.000) 

0.297 
[0.612] 
(0.000) 

0.219 
[1.495] 
(0.000)

0.192 
[1.309] 
(0.000)

0.198 
[1.345] 
(0.000)

0.203 
[3.319] 
(0.000) 

0.132 
[2.135] 
(0.000)

0.122 
[1.927] 
(0.000)

Φ-1(Pn
mix)  -0.005 

[-0.005] 
(0.674) 

-0.002 
[-0.002] 
(0.910) 

 0.031 
[0.041] 
(0.001)

0.015 
[0.020] 
(0.258)

 0.081 
[0.171] 
(0.000)

0.052 
[0.107] 
(0.000)

Last month std. 
dev. /full year 
std. dev. 

  0.379 
(0.000) 

  0.348 
(0.000)

  0.329 
(0.000)

Sample standard 
dev./robust 
standard dev. 

  -0.275 
(0.173) 

  -0.162 
(0.424)

  0.315 
(0.126)

Fraction of days in estimation year with: 
 e3 = 1   0.014 

(0.990) 
  0.248 

(0.821)
  0.111 

(0.925)
 e4 = 1   3.827 

(0.022) 
  4.661 

(0.008)
  4.401 

(0.019)
 e5 = 1   1.958 

(0.449) 
  2.592 

(0.338)
  -0.854 

(0.768)
 e6 = 1   -7.651 

(0.044) 
  -1.551 

(0.694)
  -5.302 

(0.208)
 e7 = 1   -0.793 

(0.863) 
  -6.068 

(0.204)
  -3.319 

(0.520)
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Table 8: Regression Results 

Coefficients estimates and p-values are reported for the panel data regressions described in Section 6.  
Coefficient estimates have been multiplied by 100 to improve readability.  Quarterly time dummy 
estimates are not reported to conserve space.   

 
 Dependent Variable 

 
α 
 

σi 
 σ

σα i  

Explanatory Variable Estimate p-value Estimate p-value Estimate p-value 
Durables -1.64 0.219 -0.15 0.301 -2.49 0.006
Nondurables -1.93 0.083 0.25 0.038 0.50 0.494
Utilities 2.40 0.023 0.12 0.235 -0.76 0.250
Energy 5.43 0.000 -0.49 0.000 -3.16 0.000
Construction 2.53 0.189 -0.44 0.026 -1.58 0.145
Business Equipment -2.20 0.013 -0.11 0.224 -0.58 0.360
Transportation 1.29 0.542 -0.15 0.418 -0.75 0.518
Financial -3.13 0.000 -0.16 0.025 -2.79 0.000
Business Services -4.67 0.000 0.32 0.002 -0.65 0.283
Log(Firm Size) 7.70 0.000 -0.11 0.000 2.38 0.000
Adjusted Analyst Following 1.84 0.000 0.03 0.481 2.03 0.000
Volatility 26.97 0.001 8.54 0.000 7.22 0.210
Equity Beta 1.45 0.005 -0.09 0.146 -0.03 0.941
Debt/Equity 0.00 0.418 0.00 0.162 0.00 0.680
Low Book-to-Market -0.50 0.506 -0.11 0.172 -1.59 0.002
High Book-to-Market 3.37 0.000 0.22 0.011 1.00 0.032
Turnover -76.13 0.000 8.65 0.000 39.98 0.000
Abs(Past 6 Month Return) -4.48 0.000 0.60 0.000 0.54 0.177
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Appendix 

Derivation of λ 

We assume that the market maker chooses λ so that the average profit across all trading 

days is zero.  Let pt denote the share price after incorporating the intraday public news (rpd,t).  In 

dollars per share, the market maker’s new price is pt + ptλyt, and the informed trader knows the 

true value is pt + ptri,t.  The expected profit is: 

 E[yt[(pt + ptλyt)-( pt + ptri,t)] ] = pt E[yt(λyt –ri,t)] 

Conditioning on whether an event occurs (and ignoring pt because we will be setting the profit 

equal to zero) yields 

 E[yt(λyt –ri,t)] = αE[yt(λyt –ri,t)|event] + (1-α)E[yt(λyt –ri,t)|no event] 

where 

 E[yt(λyt –ri,t)|event] = E[(xt+ut)(λ(xt+ut) –2λxt)|event]  

             = λE[ut
2 - xt

2 |event]  

             = λσu
2  - σi

2/(4λ) 

and 

 E[yt(λyt –ri,t)| no event] = E[ut(λut –0)|no event] = λσu
2

Therefore, 

 E[yt(λyt –ri,t)] = α[λσu
2  - σi

2/(4λ)] + (1-α)λσu
2

And setting this equal to zero yields expression (1) in the text: 

 λ = (1/2)α1/2(σi/σu)      
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Derivation of Conditional Variances and Covariances of (yt, ry,t , ro,t)  
 
The sample consists of a sequence of triples (yt, rd,t , ro,t ) that are jointly distributed but 

independent of all other variables. (The parameters to be estimated are α,σi,σu,σpd, and σpo.) 

If there is no event on day t, then yt = ut , rd,t = rpd,t + λut, and ro,t = rpo,t - λut.   

Thus, (yt, rd,t , ro,t ) are jointly normally distributed with mean zero and 

Var(yt)=Var(ut) = σu
2  

Var(rd,t) = Var(rpd,t + λut) =σpd
2 + λ2σu

2  

= σpd
2 +ασi

2/4    [using λ = (1/2)α1/2(σi/σu) )] 

Var(ro,t)=σpo
2 + ασi

2/4 

Cov(rd,t , ro,t ) = -λ2σu
2=-ασi

2/4 

Cov(rd,t , yt ) = λσu
2 = α1/2σiσu/2 

Cov(ro,t , yt ) = -λσu
2 = -α1/2σiσu/2 

If there is an event on day t, then xt = ri,t /(2λ), and yt =  xt + ut = ri,t /(2λ)+ ut,  

rd,t = rpd,t + λ(xt + ut) = rpd,t + ri,t /2 + λut, and ro,t = rpo,t +ri,t - λ(xt + ut)= rpo,t + ri,t /2 - λut.   

Thus, (yt, rd,t , ro,t ) are jointly normally distributed with mean zero and 

Var(yt)=Var(xt + ut) = σi
2/4λ2 + σu

2 = (1+1/α)σu
2     [again using λ = (1/2)α1/2(σi/σu)] 

Var(rd,t) =σpd
2 +σi

2/4 + λ2σu
2 = σpd

2 +(1+α)σi
2/4  

Var(ro,t)=σpo
2 +σi

2/4 + ασi
2/4= σpo

2 +(1+α)σi
2/4 

Cov(rd,t , ro,t ) = σi
2/4-λ2σu

2=(1-α)σi
2/4 

Cov(rd,t , yt ) = σi
2/4λ + λσu

2 =α-1/2σiσu/2 + α1/2σiσu/2 

Cov(ro,t , yt ) = σi
2/4λ -λσu

2 = α-1/2σiσu/2 -α1/2σiσu/2 
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Although the unconditional distribution is not normal, the unconditional variances and 

covariances can be expressed using the parameters as follows 

Var(yt)=α(1+1/α)σu
2 + (1-α)σu

2 =2σu
2

Var(rd,t) =α(σpd
2 +(1+α)σi

2/4 ) + (1-α)(σpd
2 +ασi

2/4)=σpd
2 + ασi

2/2 

Var(ro,t)=α(σpo
2 +(1+α)σi

2/4) + (1-α)(σpo
2 + ασi

2/4)=σpo
2 + ασi

2/2 

Cov(rd,t , ro,t ) = α(1-α)σi
2/4 + (1-α)-ασi

2/4=0 

Cov(rd,t , yt ) = α(α-1/2σiσu/2 + α1/2σiσu/2) + (1-α)(α1/2σiσu/2)=α1/2σiσu

Cov(ro,t , yt ) = α(α-1/2σiσu/2 -α1/2σiσu/2) + (1-α)(-α1/2σiσu/2)=0 
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