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Abstract

We analyze portfolio credit risk in light of dynamic “frailty,” by
which the credit qualities of different firms depend on common unob-
servable time-varying default covariates. Frailty is estimated to have a
large impact on estimated conditional mean default rates, above and
beyond those predicted by observable factors, and to cause a large
increase in the likelihood of large default losses for portfolios of U.S.
corporate bonds during 1980-2004.
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1 Introduction

This paper introduces and estimates for U.S. public firms a new model of
frailty-correlated defaults, according to which firms have an unobservable
common source of “frailty,” a default risk factor that changes randomly over
time. The posterior distribution of this frailty factor, conditional on past
observable covariates and past defaults, represents a significant additional
source of uncertainty to creditors. For U.S. non-financial public firms during
1979-2004, our results show that frailty induces a large increase in default
clustering, and significant additional fluctuation over time in the conditional
expected level of default losses, above and beyond that predicted by our
observable default covariates, including leverage, volatility, and interest rates.

The usual duration-based model of default probabilities is based on the
doubly-stochastic assumption, by which firms’ default times are condition-
ally independent given the paths of observable factors influencing their credit
qualities. Under this assumption, different firms’ default times are correlated
only to the extent implied by the correlation of observable factors deter-
mining their default intensities. For example, Couderc and Renault (2004),
Shumway (2001), and Duffie, Saita, and Wang (2006) use this property to
compute the likelihood function, which is to be maximized when estimating
the coefficients of a default intensity model, as the product across firms of
the covariate-conditional likelihoods of each firm’s default or survival. This
significantly reduces the computational complexity of the estimation. Das,
Duffie, Kapadia, and Saita (2007), using roughly the same data studied here,
provide evidence that defaults are significantly more correlated than would
be suggested by the doubly stochastic assumption and the assumption that
default intensities are explained solely by observable covariates.

The doubly-stochastic assumption is violated in the presence of “frailty,”
meaning unobservable explanatory variables that may be correlated across
firms. For example, the defaults of Enron in 2001 and WorldCom in 2002
may have revealed faulty accounting practices that could have been in use
at other firms, and thus may have had an impact on the conditional default
probabilities of other firms. Even if all relevant covariates are observable in
principle, some will inevitably be ignored in practice. The impacts of missing
and unobservable covariates are essentially equivalent from the viewpoint of
estimating default probabilities or portfolio credit risk.

Our primary objective is to measure the degree of frailty that has been
present for U.S. corporate defaults, and then to examine its empirical implica-



tions, especially for the risk of large total losses on corporate debt portfolios.
We find strong evidence of persistent unobserved covariates. For example,
even after controlling for the “usual-suspect” covariates, both firm-specific
and macroeconomic, we find that defaults were persistently higher than ex-
pected during lengthy periods of time, for example 1986-1991, and persis-
tently lower in others, for example during the mid-nineties. From trough
to peak, the estimated impact of frailty on the average default rate of U.S.
corporations during 1980-2004 is roughly a factor of 2. This is quite dis-
tinct from the effect of time fixed effects (time dummy variables, or baseline
hazard functions), because of the discipline placed on the behavior of the un-
observable covariate through its transition probabilities, and because of the
impact on portfolio loss risk of correlated uncertainty across firms regarding
the current levels of their default risk. Deterministic time effects eliminate
two important potential channels for default correlation, namely uncertainty
regarding the current level of the time effect, and uncertainty regarding its
future evolution.

Incorporating unobserved covariates also has an impact on the relative de-
fault probabilities of individual issuers because it changes the relative weights
placed on different observable covariates, although this effect is not especially
large for our data because of the dominant role of a single covariate, the “dis-
tance to default,” which is a volatility corrected measure of leverage.

We anticipate several types of applications for our work. Understanding
how corporate defaults are correlated is particularly important for the risk
management of portfolios of corporate debt. For example, as backing for the
performance of their loan portfolios, banks retain capital at levels designed
to withstand default clustering at extremely high confidence levels, such as
99.9%. Some banks do so on the basis of models in which default correlation
is assumed to be captured by common risk factors determining conditional
default probabilities, as in Vasicek (1987) and Gordy (2003). If, however,
defaults are more heavily clustered in time than currently captured in these
default-risk models, then significantly greater capital might be required in
order to survive default losses with high confidence levels. An understanding
of the sources and degree of default clustering is also crucial for the rating
and risk analysis of structured credit products that are exposed to correlated
default, such as collateralized debt obligations (CDOs) and options on port-
folios of default swaps. The Bank of International Settlements (BIS) reports®

!Data are provided in the 75th BIS Annual Report, June 2005.



that cash CDO volumes reached $163 billion in 2004, while synthetic CDO
volumes reached $673 billion. While we do not address the pricing of credit
risk in this paper, frailty could play a useful role in the market valuation of
relatively senior tranches of CDOs, which suffer a loss of principle only when
the the total default losses of the underlying portfolio of bonds is extreme.

The remainder of the paper is organized as follows. The rest of this
introductory section gives an overview of related literature and describes
our dataset. Section 2 specifies the basic probabilistic model for the joint
distribution of default times. Section 3 shows how we estimate the model
parameters using a combination of the Monte Carlo EM algorithm and the
Gibbs sampler. Section 4 summarizes some of the properties of the fitted
model and of the posterior distribution of the frailty variable, given the en-
tire sample. Section 5 characterizes the posterior of the frailty variable at
any point in time, given only past history. Section 6 provides various applica-
tions of the frailty model for credit risk modeling. Section 6.1 addresses the
impact of frailty on term structures of default probabilities of a given firm.
Sections 6.2 and 6.3 provide an analysis of the impact of the frailty variable
on default correlation and the tail risk of a U.S. corporate debt portfolio.
Taking a Bayesian perspective, Section 7 provides an assessment of the im-
pact of posterior parameter uncertainty on our results. Section 8 examines
the out-of-sample default prediction performance of our model, while Section
9 concludes and suggests some areas for future research.

1.1 Related Literature

A standard structural model of default timing assumes that a corporation
defaults when its assets drop to a sufficiently low level relative to its liabilities.
For example, the models of Black and Scholes (1973), Merton (1974), Fisher,
Heinkel, and Zechner (1989), and Leland (1994) take the asset process to be
a geometric Brownian motion. In these models, a firm’s conditional default
probability is completely determined by its distance to default, which is the
number of standard deviations of annual asset growth by which the asset
level (or expected asset level at a given time horizon) exceeds the firm’s
liabilities. An estimate of this default covariate, using market equity data
and accounting data for liabilities, has been adopted in industry practice
by Moody’s KMV, a leading provider of estimates of default probabilities
for essentially all publicly traded firms (see Crosbie and Bohn (2002) and
Kealhofer (2003)). Based on this theoretical foundation, we include distance
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to default as a covariate into our model for default risk.

In the context of a standard structural default model of this type, how-
ever, Duffie and Lando (2001) show that if distance to default cannot be ac-
curately measured, then a filtering problem arises, and the resulting default
intensity depends on the measured distance to default and on other covari-
ates that may reveal additional information about the firm’s condition. More
generally, a firm’s financial health may have multiple influences over time.
For example, firm-specific, sector-wide, and macroeconomic state variables
may all influence the evolution of corporate earnings and leverage. Given the
usual benefits of parsimony, the model of default probabilities estimated in
this paper adopts a relatively small set of firm-specific and macroeconomic
covariates.

Altman (1968) and Beaver (1968) were among the first to estimate statis-
tical models of the likelihood of default of a firm within one accounting period,
using accounting data. Early in the empirical literature on default time dis-
tributions is the work of Lane, Looney, and Wansley (1986) on bank default
prediction, using time-independent covariates. Lee and Urrutia (1996) used
a duration model based on a Weibull distribution of default times. Dura-
tion models based on time-varying covariates include those of McDonald and
Van de Gucht (1999), in a model of the timing of high-yield bond defaults
and call exercises. Related duration analysis by Shumway (2001), Kavvathas
(2001), Chava and Jarrow (2004), and Hillegeist, Keating, Cram, and Lund-
stedt (2004) predict bankruptcy. Shumway (2001) uses a discrete duration
model with time-dependent covariates. Duffie, Saita, and Wang (2006) pro-
vide maximum likelihood estimates of term structures of default probabilities
by using a joint model for default intensities and the dynamics of the un-
derlying time-varying covariates. These papers make the doubly-stochastic
assumption, and therefore do not account for unobservable or missing co-
variates affecting default probabilities. In a frailty setting, the arrival of a
default causes, via Bayes’ Rule, a jump in the conditional distribution of hid-
den covariates, and therefore a jump in the conditional default probabilities
of any other firms whose default intensities depend on the same unobservable
covariates. For example, the collapses of Enron and WorldCom could have
caused a sudden reduction in the perceived precision of accounting leverage
measures of other firms. Collin-Dufresne, Goldstein, and Helwege (2003)
and Zhang (2004) find that a major credit event at one firm is associated
with significant increases in the credit spreads of other firms, consistent with
the existence of a frailty effect for actual or risk-neutral default probabil-



ities. Collin-Dufresne, Goldstein, and Huggonier (2004), Giesecke (2004),
and Schonbucher (2003) explore learning-from-default interpretations, based
on the statistical modeling of frailty, under which default intensities include
the expected effect of unobservable covariates. Yu (2005) finds empirical
evidence that, other things equal, a reduction in the measured precision of
accounting variables is associated with a widening of credit spreads.

Delloy, Fermanian, and Sbai (2005) and Koopman, Lucas, and Monteiro
(2005) estimate dynamic frailty models of rating transitions. They suppose
that the only observable firm-specific default covariate is an agency credit
rating, and assume that all intensities of downgrades from one rating to the
next depend on a common unobservable factor. Because credit ratings are
incomplete and lagging indicators of credit quality, as shown for example by
Lando and Skgdeberg (2002), one would expect to find substantial frailty in
ratings-based models such as these. As shown by Duffie, Saita, and Wang
(2006), the observable covariates that we propose offer substantially better
out-of-sample default prediction than does prediction based on credit ratings.

1.2 Data

Our dataset, drawing from Bloomberg, Compustat, CRSP and Moody’s, is
almost the same as that used in Duffie, Saita, and Wang (2006) and Das,
Duffie, Kapadia, and Saita (2007). We have slightly improved the data by
using The Directory of Obsolete Securities and the SDC database to identify
additional mergers, defaults, and failures. We have checked that the few ad-
ditional defaults and mergers identified through these sources do not change
significantly the results of Duffie, Saita, and Wang (2006). Our dataset con-
tains 402,434 firm-months of data between January 1979 and March 2004.
Because of the manner in which we define defaults, it is appropriate to use
data only up to December 2003. For the total of 2,793 companies in this im-
proved dataset, Table I shows the number of firms in each exit category. Of
the total of 496 defaults, 176 first occurred as bankruptcies, although many
of the “other defaults” eventually led to bankruptcy. We refer the interested
reader to Section 3.1 of Duffie, Saita, and Wang (2006) for an in-depth de-
scription of the construction of the dataset and an exact definition of these
event types.

Figure 1 shows the total number of defaults (bankruptcies and other



Exit type Number
bankruptcy 176
other default 320
merger-acquisition 1,047
other exits 671

Table I: Number of firm exits of each type.

defaults) in each year. Moody’s 13th annual corporate bond default study?
provides a detailed exposition of historical default rates for various categories
of firms since 1920.

The model of default intensities estimated in this paper adopts a parsi-
monious set of observable firm-specific and macroeconomic covariates:

e Distance to default, a volatility-adjusted measure of leverage. Our
method of construction, based on market equity data and Compustat
book liability data, is along the lines of that used by Vassalou and Xing
(2004), Crosbie and Bohn (2002), and Hillegeist, Keating, Cram, and
Lundstedt (2004). Although the conventional approach to measuring
distance to default involves some rough approximations, Bharath and
Shumway (2004) provide evidence that default prediction is relatively
robust to varying the proposed measure with some relatively simple
alternatives.

e The firm’s trailing 1-year stock return.
e The 3-month Treasury bill rate.

e The trailing 1-year return on the S&P 500 index.

Duffie, Saita, and Wang (2006) give a detailed description of these co-
variates and discuss their relative importance in modeling corporate default
intensities. Other macroeconomic variables, such as GDP growth rates, in-
dustrial production growth rates, the BBB-AAA credit spread, and the in-
dustry average distance to default, were also considered but found to be at
best marginally significant after controlling for distance to default, trailing

2Moody’s Investor Service, “Historical Default Rates of Corporate Bond Issuers, 1920-
1999.”



80

Number of defaults

0
1980 1985 1990 1995 2000

Year

Figure 1: The number of defaults in our dataset for each year between 1980 and 2003.

returns of the firm and the S&P 500, and the 3-month treasury-bill rate.
We also considered a firm size covariate, measured as the logarithm of the
model-implied assets. Size may be associated with market power, manage-
ment strategies, or borrowing ability, all of which may affect the risk of
failure. For example, it might be easier for a big firm to re-negotiate with
its creditors to postpone the payment of debt, or to raise new funds to pay
old debt. In a “too-big-to-fail” sense, firm size may also negatively influ-
ence failure intensity. The statistical significance of size as a determinant
of failure risk has been documented by Shumway (2001). For our data and
our measure of firm size, however, this covariate did not play a statistically
significant role.



2 The Model

We fix a probability space (€2, F,P) and an information filtration® {G; : ¢t > 0}
for the purpose of introducing the default timing model, which will be made
precise as we proceed. For a given borrower whose default time is 7, we
say that a non-negative progressively measurable process A is the default
intensity of the borrower if a martingale is defined by 1,<; — fot Aslrssds.
This means that, for a firm that has not yet defaulted, the default intensity
is the conditional mean arrival rate of default, measured in events per unit
of time.

Our model is based on a Markov state vector X, of firm-specific and
macroeconomic covariates, that may be only partially observable. If all of
these covariates were observable, the default intensity of firm ¢ at time ¢
would be of the form A\; = A (S;(X;),0), where 6 is a parameter vector to
be estimated and S;(X;) is the component of the state vector relevant to
the default intensity of firm ¢. The doubly-stochastic assumption is that,
conditional on the path of the underlying state process X determining de-
fault and other exit intensities, the exit times of firms are the first event
times of independent Poisson processes with time-varying intensities deter-
mined by the path of X. In particular, this means that, given the path of
the state-vector process, the merger and failure times of different firms are
conditionally independent.

A major advantage of the doubly-stochastic formulation is tractability.
Duffie, Saita, and Wang (2006) show that it allows decoupled maximum-
likelihood estimation of the parameter vector v determining the time-series
dynamics of the covariate process X as well as the parameter vector 6 deter-
mining the default intensities. The two parameter vectors v and 6 can then
be combined to obtain the maximum-likelihood estimator of, for example, a
multi-year portfolio loss probability.

Coupled with the model of default intensities that we adopt here, the
doubly-stochastic assumption is overly restrictive for U.S. public non-financial
corporations during 1979-2004, according to tests developed in Das, Dulffie,
Kapadia, and Saita (2007). There are several channels by which the exces-
sive default correlation shown in Das, Duffie, Kapadia, and Saita (2007) could
arise. With “contagion,” for example, default by one firm could have a direct
influence on the default likelihood of another firm. This would be anticipated

3For precise mathematical definitions not offered here, see Protter (2004).



to some degree if one firm plays a relatively large role in the marketplace of
another. The influence of the bankruptcy of auto parts manufacturer Delphi
in November 2005 on the survival prospects of General Motors’ illustrates
how failure by one firm could weaken another, above and beyond the default
correlation associated with common or correlated covariates.

In this paper, we examine instead the implications of “frailty,” by which
many firms could be jointly exposed to one or more unobservable risk fac-
tors. We restrict attention for simplicity to a single common frailty factor
and to firm-by-firm idiosyncratic frailty factors, although a richer model and
sufficient data could allow for the estimation of additional frailty factors, for
example at the sectoral level.

The mathematical model that we adopt is actually doubly stochastic once
the information available to the econometrician is artificially enriched to in-
clude the frailty factors. That is, conditional on the future paths of both
the observable and unobservable components of the state vector X, firms are
assumed to default independently. Thus, there are two channels for default
correlation: (i) future co-movement of the observable and unobservable fac-
tors determining intensities, and (ii) uncertainty in the current conditional
distribution of the frailty factors, given past observations of the observable
covariates and past defaults.

We let U;; be a firm-specific vector of covariates that are observable for
firm ¢ from when it first appears in the data at some time ¢; until its exit time
T;. We let V; denote a vector of macro-economic variables that are observable
at all times, and let Y; be an vector of unobservable frailty variables. The
complete state vector is then X; = (Uyy, ..., Unt, Vi, Y2), where m is the total
number of firms in the dataset.

We let W, = (1, Uy, V;) be the vector of observed covariates for company
i (including a constant). Since we observe these covariates on a monthly basis
but measure default times continuously, we take Wi, = W; i), where k (t) is
the time of the most recent month end. We let T; be the last observation
time of company ¢, which could be the time of a default or another form of
exit. While we take the first appearance time ¢; to be deterministic, we could
generalize and allow ¢; to be a stopping time under regularity conditions.

The information filtration (H;),.,. generated by firm-specific covariates
is defined by o

Ht:O'({ULS1§Z§m,t1§8§t/\ﬂ})
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The default-time filtration (U;),,<p is given by
U=0c{Dis:1<i<mt; <s<tNT;}),

where D; is the default indicator process of company ¢ (which is 0 before
default, 1 afterwards). The econometrician’s information filtration (F;),,«p
is defined by the join,

ft:U(HtUZ/{tU{‘/SOSSSt})
The complete-information filtration (G;) ., is the yet larger join
gt:U({}/SOSSSt})\/ft

With respect to the complete information filtration (G;), default times
and other exit times are assumed to be doubly stochastic, with the default
intensity of firm ¢ given by A\; = A(S;(X});0), where S;(X;) = (W, Y:). We
take the proportional-hazards form

A((w,y);0) = Pt thnwatmy N

for a parameter vector = (3,7, k) common to all firms, where k is a pa-
rameter whose role will be defined below. We can write

i = B Wit onVe — Xit 6775/15’ (2)

so that Xl-t is the component of the (G;)-intensity that is due to observable
covariates and e is a scaling factor due to the unobservable frailty.

In the sense of Proposition 4.8.4 of Jacobsen (2006), the econometrician’s
default intensity for firm ¢ is

Xit =F ()\zt ‘ ft) = 6'8.W“E (e"Yt ‘ft) .

It is not generally true* that the conditional probability of survival to a
future time 7' (neglecting the effect of mergers and other exits) is given by

the “usual formula” E <e_ 5 Nis ds ] ]-"t> . Rather, for a firm that has survived

4See Collin-Dufresne, Goldstein, and Huggonier (2004) for another approach to this
calculation.
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to time ¢, the probability of survival to time T (again neglecting other exits)
1s

E <e* S A ds | ]—"t) . (3)

Although ); is not the (F;)-intensity of default, (3) is justified by the
law of iterated expectations and the doubly stochastic property on the the
complete-information filtration (G;), which implies that the G;-conditional

survival probability is £ <e’ S i ds | gt) . Extending (3), the F;-conditional

probability of joint survival by any subset A of currently alive firms until a
future time 7' (ignoring other exits) is

E <e’ S Eieaisds | ]—"t> .

Before considering the effect of other exits such as mergers and acquisitions,
the maximum likelihood estimators of these F;-conditional survival probabil-
ities, and related quantities such as default correlations, are obtained under
the usual smoothness conditions by substituting the maximum likelihood
estimators for the parameters (v, ) into these formulas.

If other exits, for example due to mergers and acquisitions, are jointly
doubly stochastic with default exists, and other exits have the intensity pro-
cess 7;, then the conditional probability at time ¢ that firm ¢ will not exit
before time T > t is E <e* S Qrisis) ds | ft) . For example, it is impossible
for a firm to default beginning in 2 years if it has already been acquired by
another firm within 2 years.

To further simplify notation, let W = (W7y,..., W,,) denote the vector
of observed covariate processes for all companies, and let D = (Dy, ..., D,,)
denote the vector of default indicators of all companies. On the complete-
information filtration (G;), the doubly-stochastic property and Proposition 2
of Duffie, Saita, and Wang (2006) states that the likelihood of the data at
the parameters (7, 6) is of the form

L(v,0|W,Y,D)

— L(y|W)L (0| W.Y.D)

- *%AitAt T
e

=L(y|W) H =t H [DiXie At + (1 — Dy)] | . (4)

=1 t=t;
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We simplify by supposing that the frailty process Y is independent of the ob-
servable covariate process W. With respect to the econometrician’s filtration
(F:), the likelihood is therefore

cw,e\W,m:/cw,mw,y,D)pY(y)dy

:L(V\W)/E(Hlmy,l?)py(y)dy

m - ;; AeAt L
=L |W)E H e = H [DitAir + (1 — Dit)] W.D|, (5)
i=1 t=t;

where py () is the unconditional probability density of the path of the un-
observed frailty process Y. The final expectation of (5) is with respect to
that density. This expression ignores for notational simplicity the precise
intra-month timing of default, although the precise intra-month timing was
used for parameter estimation.

We provide the maximum likelihood estimator (MLE) (¥,8) for (v,6).
Extending from Proposition 2 of Duffie, Saita, and Wang (2006), we can
decompose this MLE problem into separate maximum likelihood estimations
of v and 6, by maximization of the first and second factors on the right-hand
side of (5), respectively.

Even when considering other exits such as those due to acquisitions, (¥, é)
is the full maximum likelihood estimator for (v, 8) provided all forms of exit
are jointly doubly stochastic on the complete information filtration (G;), as
in Duffie, Saita, and Wang (2006). We make this simplifying assumption.

In order to evaluate the expectation in (5), one could simulate sample
paths of the frailty process Y. Since our covariate data are monthly obser-
vations from 1979 to 2004, evaluating (5) by direct simulation would then
mean Monte Carlo integration in a high-dimensional space. This is extremely
numerically intensive by brute-force Monte Carlo, given the overlying search
for parameters. We now address a version of the model that can be feasibly
estimated.

We suppose that Y is an Ornstein-Uhlenbeck (OU) process, in that

dY, = —rY, dt + dB,, Yy =0, (6)

where B is a standard Brownian motion with respect to (2, F, P, (G;)), and
where k is a non-negative constant, the mean-reversion rate of Y. Without
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loss of generality, we have fixed the volatility parameter of the Brownian
motion to be unity because scaling the parameter 7, which determines in (1)
the dependence of the default intensities on Y;, plays precisely the same role
in the model as scaling the frailty process Y.

We estimate the model parameters using a combination of the EM algo-
rithm and the Gibbs sampler, as described in Section 3 and the appendices.

Although an OU-process is a reasonable starting model for the frailty
process, one could allow a richer model. We have found, however, that even
our relatively large data set is too limited to identify much of the time-series
properties of the frailty process. For the same reason, we have not attempted
to identify sector-specific frailty effects.

The starting value and long-run mean of the OU-process are taken to be
zero, since any change (of the same magnitude) of these two parameters can
be absorbed into the default intensity intercept coefficient ;. However, we do
lose some generality by taking the initial condition for Y to be deterministic
and to be equal to the long-run mean. An alternative would be to add one or
more additional parameters specifying the initial probability distribution of
Y. We have found that the posterior of Y; tends to be robust to the assumed
initial distribution of Y, for points in time ¢ that are a year or two after the
initial date of our sample.

2.1 Unobserved Heterogeneity

It may be that a substantial portion of the differences among firms’ default
risks is due to unobserved heterogeneity. We consider an extension of the
model by introducing a firm-specific heterogeneity factor Z; for firm i, so
that the complete-information (G;) default intensity of firm 4 is of the form

Ny = eXiePtYe g Xite'thZi (7)

where 71, ..., Z,, are independently and identically gamma-distributed® ran-
dom variables that are jointly independent of the observable covariates W
and the common frailty process Y.

°Pickles and Crouchery (1995) show in simulation studies that it is relatively safe
to make concrete parametric assumptions about the distribution of the frailty variables.
Inference is expected to be similar whether the frailty distribution is modeled as gamma,
log-normal or some other parametric family, but for analytical tractability we chose the
gamma distribution.
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Fixing the mean of the heterogeneity factor Z; to be 1 without loss of
generality, we found that maximum likelihood estimation does not pin down
the variance of Z; to any reasonable precision with our limited set of data. We
anticipate that far larger datasets would be needed, given the already large
degree of observable heterogeneity and the fact that default is, on average,
relatively unlikely. In the end, we examine the potential role of unobserved
heterogeneity for default risk by fixing the standard deviation of Z; at 0.5. It
is easy to check that the likelihood function is again given by (5), where in this
case the final expectation is with respect to the product of the distributions
of Y and Zy,...,Z,.

3 Parameter Estimation

We now turn to the problem of inference from data. The parameter vector
v determining the time-series model for the observable covariate process W
is specified and estimated in Duffie, Saita, and Wang (2006). This model,
summarized in Appendix D, is vector-autoregressive Gaussian, with a number
of structural restrictions chosen for parsimony and tractability. We focus here
on the estimation of the parameter vector 6 of the default intensity model.

We use a variant of the expectation-maximization (EM) algorithm (see
Demptser, Laird, and Rubin (1977)), an iterative method for the computa-
tion of the maximum likelihood estimator of parameters of models involving
missing or incomplete data. See also Cappé, Moulines, and Rydén (2005),
who discuss EM in the context of hidden Markov models. In many potential
applications, explicitly calculating the conditional expectation required in
the “E-step” of the algorithm may not be possible. Nevertheless, the expec-
tation can be approximated by Monte Carlo integration, which gives rise to
the stochastic EM algorithm, as explained for example by Celeux and Diebolt
(1986) and Nielsen (2000), or to the Monte-Carlo EM algorithm (Wei and
Tanner (1990)).

Maximum likelihood estimation (MLE) of the intensity parameter vector
f involves the following steps:

0. Initialize an estimate of § = (3,7, k) at 6©) = (3,0.05,0), where (3 is
the maximum likelihood estimator of  in the model without frailty,
which can be obtained by maximizing the likelihood function (4) by
standard methods such as the Newton-Raphson algorithm.
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1. (E-step) Given the current parameter estimate §*) and the observed
covariate and default data W and D, respectively, draw n independent
sample paths YV ... Y™ from the conditional density py (- | W, D, 8*))
of the latent Ornstein-Uhlenbeck frailty process Y. We do this with the
Gibbs sampler described in Appendix A. We let

Q(0,0%) = Eyu (logL(0|W,Y,D)) (8)

_ / log £(0|W,y, D) py (y|W,D,0%) dy,  (9)

where FEjy denotes expectation with respect to the probability mea-
sure associated with a particular parameter vector #. This “expected
complete-data log-likelihood” or “intermediate quantity,” as it is com-
monly called in the EM literature, can be approximated with the sample
paths generated by the Gibbs sampler as

Q (0,60 = %Zlogﬁ(&\VV,Y(j),D). (10)
j=1

2. (M-step) Maximize @(9, 0™)) with respect to the parameter vector 6,
for example by Newton-Raphson. The maximizing choice of # is the
new parameter estimate g+,

3. Replace k with k 4+ 1, and return to Step 1, repeating the E-step and
the M-step until reasonable numerical convergence is achieved.

One can show (Demptser, Laird, and Rubin (1977) or Gelman, Carlin,
Stern, and Rubin (2004)) that £(v, 0%+Y | W, D) > L(~, 8% | W, D). That is,
the observed data likelihood (5) is non-decreasing in each step of the EM al-
gorithm. Under regularity conditions, the parameter sequence {O(k) ck >0}
therefore converges to at least a local maximum (see Wu (1983) for a pre-
cise formulation in terms of stationarity points of the likelihood function).
Nielsen (2000) gives sufficient conditions for global convergence and asymp-
totic normality of the parameter estimates, although these conditions are
usually hard to verify. As with many maximization algorithms, a simple
way to mitigate the risk that one misses the global maximum is to start the
iterations at many points throughout the parameter space.
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Under regularity conditions, the Fisher and Louis identities (see for ex-
ample Proposition 10.1.6 of Cappé, Moulines, and Rydén (2005)) imply that

VoL (é W, Y, D) —V,Q (9, é) s
and
VL (é W, Y, D) — V20 (9, é) o

The Hessian matrix of the expected complete-data likelihood (9) can there-
fore be used to estimate asymptotic standard errors for the MLE parameter
estimators.

We estimated a generalization of the model that incorporates unobserved
heterogeneity, using an extension of this algorithm that is provided in Ap-
pendix B.

4 Empirical analysis

This section addresses inference for the model, beginning with parameter
estimation, then addressing the estimated impact of the frailty. We also
compare the fit of the model with some alternative specifications, mainly in
order to address the robustness of our basic specification.

4.1 Fitted Model

We fit our models to the data for all matchable U.S. non-financial public
firms, as described in Section 1.2. This section presents the basic results.

Table II shows the estimated covariate parameter vector # and frailty
parameters 7) and k, with estimates of asymptotic standard errors given par-
enthetically.

Our results show important roles for both firm-specific and macroeco-
nomic covariates. Distance to default, although a highly significant covari-
ate, does not on its own determine the default intensity, but does explain a
large part of the variation of default risk across companies and over time. For
example a negative shock to distance to default by one standard deviation
increases the default intensity by roughly e'? — 1 ~ 230%. The one-year
trailing stock return covariate proposed by Shumway (2001) has a highly sig-
nificant impact on default intensities. Perhaps it is a proxy for firm-specific
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Coefficient | Std. Error | t-statistic
constant —1.029 0.201 —5.1
distance to default —1.201 0.037 —32.4
trailing stock return —0.646 0.076 —8.6
3-month T-bill rate —0.255 0.033 -7.8
trailing S&P 500 return 1.556 0.300 5.2
latent-factor volatility 0.125 0.017 7.4
latent-factor mean reversion 0.018 0.004 4.8

Table II: Maximum likelihood estimates of intensity-model parameters. The frailty
volatility is the coefficient n of dependence of the default intensity on the OU frailty
process Y. Estimated asymptotic standard errors are computed using the Hessian matrix
of the expected complete data log-likelihood at 6 = 0. The mean reversion and volatility

parameters are based on monthly time intervals.

information that is not captured by distance to default.® The coefficient
linking the trailing S&P 500 return to a firm’s default intensity is positive
at conventional significance levels, and of the unexpected sign by univariate
reasoning. Of course, with multiple covariates, the sign need not be evidence
that a good year in the stock market is itself bad news for default risk. It
could also be the case that, after boom years in the stock market, a firm’s
distance to default overstates its financial health.

The estimate 7 = 0.125 of the dependence of the unobservable default
intensities on the frailty variable Y;, corresponds to a monthly volatility of
this frailty effect of 12.5%, which translates to an annual volatility of 43.3%,
which is highly economically and statistically significant.

Table III reports the intensity parameters of the same model after remov-
ing the role of frailty. The signs, magnitudes, and statistical significance of
the coefficients on the observable covariates are similar to those with frailty,
with the exception of the coefficient for the 3-month Treasury bill rate, which
is smaller without frailty, but remains statistically significant.

6There is also the potential, with the momentum effects documented by Jegadeesh and
Titman (1993) and Jegadeesh and Titman (2001), that trailing return is a forecaster of
future distance to default.
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Coefficient | Std. Error | t-statistic
constant —2.093 0.121 —174
distance to default —1.200 0.039 —-30.8
trailing stock return —0.681 0.082 —-8.3
3-month T-bill rate —0.106 0.034 —-3.1
trailing S&P 500 return 1.481 0.997 1.5

Table III: Maximum likelihood estimates of the intensity parameters in the model without
frailty. Estimated asymptotic standard errors were computed using the Hessian matrix of
the likelihood function at 6 = 0.

4.2 The Posterior of the Frailty Path

The Gibbs sampler allows us to compute the Fr-conditional posterior distri-
bution of the frailty variable Y;, where T is the final date of our sample. This
is the conditional distribution of the latent factor given all of the historical
default and covariate data through the end of the sample period. Figure 2
shows the conditional mean of the latent factor, estimated as the average of
5,000 samples of Y; drawn from the Gibbs sampler. One-standard-deviation
bands are shown around the posterior mean. We see substantial fluctuations
in the frailty effect over time. For example, the multiplicative effect of the
frailty factor on default intensities in 2001 is roughly €%®, or approximately
2.2 times larger than during 1995. A comparison that is based on replacing
Y (t) in E[e™® | F;] with the posterior mean of Y (¢) works reasonably well
because the Jensen effects associated with the expectations of e”'® for times
in 1995 and 2001 are roughly comparable.

In the next section, we compare the posterior of the latent factor Y; given
all data through the end of the sample with that obtained by conditioning on
only the contemporaneously available information F; at time t. The latter is
the relevant conditioning for most applications involving estimates of credit
risk.

A comparison of Figures 1 and 2 shows that the frailty effect is generally
higher when defaults are more prevalent. In light of this, one might suspect
misspecification of the proportional-hazards intensity model (1), which would
automatically induce a measured frailty effect if the true intensity model
has a higher-than-proportional dependence on distance to default. If the
response of the true log-intensity to variation in distance to default is faster
than linear, then the estimated latent variable in our current formulation
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Figure 2: Conditional posterior mean FE (nY;|Fr) of the scaled latent Ornstein-
Uhlenbeck frailty variable, with one-standard-deviation bands based on the Fr-conditional

variance of Y;.

would be higher when distances to default are well below normal, as in 1991
and 2002. Appendix C provides an extension of the model that incorporates
non-parametric dependence of default intensities on distance to default. The
results indicate that the proportional-hazards specification is unlikely to be
a significant source of misspecification in this regard. The response of the
estimated log intensities is roughly linear in distance to default, and the
estimated posterior of the frailty path has roughly the appearance shown in
Figure 2.

Appendix B shows that our general conclusions regarding the role of
the various covariates and frailty remain as stated even after allowing for a
significant degree of unobserved heterogeneity across firms.
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4.3 Frailty versus No Frailty

In order to judge the relative fit of the models with and without frailty, we
do not use standard tests, such as the chi-square test. Instead, we compare
the marginal likelihoods of the models. This approach does not rely on large-
sample distribution theory and has the intuitive interpretation of attaching
prior probabilities to the competing models.

Specifically, we consider a Bayesian approach to comparing the quality of
fit of competing models and assume positive prior probabilities for the two
models “noF” (the model without frailty) and “F” (the model with a common
frailty variable). The posterior odds ratio is

P(F|W,D)  Lp(3r,0r|W,D)  P(F)

- I , 11
P (IlOF | VV’ D) ‘CnoF(:?noFa enoF ’ VV> D) P (HOF) ( )

where 0, v and L, denote the MLE and the likelihood function for a certain
model M, respectively. Plugging (5) into (11) gives
P(EIW,D) LG IW)Le@e|W,D)  P(F)

P (noF | W, D) L Fnor | W) Loop (Bor | W, D) P (n0F)
LnoF(‘/g\noF ‘ VV: D) ]P) (HOF) ’
using the fact that the time-series model for the covariate process W is the
same in both models. The first factor on the right-hand side of (12) is
sometimes known as the “Bayes factor.”

Following Kass and Raftery (1995) and Eraker, Johannes, and Polson
(2003), we focus on the size of the statistic & given by twice the natural
logarithm of the Bayes factor, which is on the same scale as the likelihood
ratio test statistic. A value for ® between 2 and 6 provides positive evi-
dence, a value between 6 and 10 strong evidence, and a value larger than
10 provides very strong evidence for the alternative model. This criterion
does not necessarily favor more complex models due to the marginal nature
of the likelihood functions in (12). See Smith and Spiegelhalter (1980) for a
discussion of the penalizing nature of the Bayes factor, sometimes referred
to as the “fully automatic Occam’s razor.” In our case, the outcome of the
test statistic is 2230. In the sense of this approach to model comparison, we
see strong evidence in favor of including a frailty variable.”

"Unfortunately, the Bayes factor cannot be used for comparing the model with frailty to
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Figure 3: Conditional posterior density of the scaled frailty factor, nY;, for ¢ in January
2000, given Fr, that is, given all data, (solid line), and given only contemporaneously
available data in F; (dashed line). These densities are calculated using the forward-

backward recursions described in Section 5.

5 Filtering the Frailty Effect

While Figure 2 illustrates the posterior distribution of the frailty variable Y;
given all information available 7 at the final time T of the sample period,
most applications of a default-risk model would call for the posterior distribu-
tion of Y; given the current information ;. This is the relevant information
for measurement by a bank of the risk of a portfolio of corporate debt.
Figure 3 compares the conditional density of Y; for ¢ at the end of January
2000, conditioning on Fr (in effect, the entire sample of default times and

the model with frailty and unobserved heterogeneity, since for the latter model evaluating
the likelihood function is computationally prohibitively expensive.
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Figure 4: Conditional mean F (nY;|F;) and conditional one-standard-deviation bands

of the scaled frailty variable, given only contemporaneously available data (F;).

observable covariates up to 2004), with the density of Y; when conditioning
on only F; (the data available up to and including January 2000). Given
the additional information available at the end of 2004, the Fp-conditional
distribution of Y; is more concentrated than that obtained by conditioning
on only the concurrently available information, F;. The posterior mean of
Y; given the information available in January 2000 is lower than that given
all of the data through 2004, reflecting the sharp rise in corporate defaults
in 2001-2002 above and beyond that predicted from the observed covariates
alone.

Figure 4 shows the path over time of the mean E(nY; | F;) of this posterior
density.

The calculations necessary to produce these posterior distributions are
based on the standard approach to filtering and smoothing in non-Gaussian
state space models, the so-called forward-backward algorithm due to Baum,
Petrie, Soules, and Weiss (1970). For this, we let R(t) = {i : D;;y = 0,
t; <t <T;} denote the set of firms that are alive at time ¢, and AR (t) =
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{i€e R(t—1): Dy =1,t; <t <T;} be the set of firms that defaulted at time
t. A discrete-time approximation of the complete-information likelihood of
the observed survivals and defaults at time ¢ is

Li(0|W,Y,D) =L, (0|W,,Y,, D) = ] e [] MaAt.
iER(t) iEAR(t)

The normalized version of the forward-backward algorithm allows us to cal-
culate the filtered density of the latent Ornstein-Uhlenbeck frailty variable
by the recursion

o = [ ol Fi) 6 =) £000 1 Wess D) dys dy
1
p(y| F) = C—/p(yt1!Ft1)p(yt\yt1,9)£t (0| Wiy, Dy) dyor,
t

where p (Y; | Y1, 0) is the one-step transition density of the OU-process (6).
For this recursion, we begin with the distribution (Dirac measure) of Yj
concentrated at 0.

Once the filtered density p (y; | F;) is available, the marginal smoothed
density p (y; | Fr) can be calculated using the normalized backward recursions
(Rabiner (1989)). Specifically, for t = T'— 1,7 — 2,...,1, we apply the
recursion for the marginal density

1

ayr () = o P (Wi | yi=1,0) Log1 (0] Wigr, Y1, D) @erjr (Yes1) dyea

pi| Fr) = pye| Fo) @ur (i),

beginning with @7 (y;) = 1.

In order to explore the joint posterior distribution p ((yo, Y. yr) | FT)
of the latent frailty variable, one may employ, for example, the Gibbs sampler
described in Appendix A.

6 Credit Risk Applications

We turn to some practical implications of frailty for firm-level or portfolio
credit risk.
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6.1 The Term-Structure of Default Risk of a Firm

We first examine the implications of frailty for the term structure of condi-
tional default probabilities of a currently active firm i at time ¢, defined at
maturity date v by the hazard rate

1 —0pi(t,u)

hilt u) = pi(t,u) du ’

where (ignoring other exit effects, which are treated in Duffie, Saita, and
Wang (2006))

pi(t,u) = E (6‘” Aue e | Ft)

is the F;-conditional probability of survival from ¢ to u. The conditional
hazard rate is the conditional expected rate of default at time u, given both
F; and the event of survival up to time w.

As an illustration, we consider the term structure of default hazard rates
of Xerox Corporation for three different models, (i) the basic model in which
only observable covariates are considered, (i) the model with the latent OU
frailty variable, and (%) the model with the common OU frailty variable
as well as unobserved heterogeneity. Figure 5 shows the associated term
structures of default hazard rates for Xerox Corporation in December 2003,
given the available information at that time.

6.2 Default Correlation

As noted before, in the model without frailty, firms’ default times are cor-
related only as implied by the correlation of observable factors determining
their default intensities. Without frailty, the model-implied default corre-
lations were found to be much lower than the sample default correlations
estimated by DeServigny and Renault (2002). The results of Das, Duffie,
Kapadia, and Saita (2007) confirm that the default correlations implied by
the doubly stochastic model (without frailty) are significantly understated.
Common dependence on unobservable covariates, as in our model, allows a
substantial additional channel of default correlation.

For a given conditioning date ¢ and maturity date u > t, and for two given
active firms ¢ and j, the default correlation is the F;-conditional correlation
between D;, and Dj,, the default indicator processes for company 7 and 7,
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Figure 5: The term structure of conditional hazard rates for Xerox Corporation in
December 2003 for the model with frailty variable (solid line), the model without frailty
variable (dashed line), and the model with frailty variable and unobserved heterogeneity
(dotted line).

respectively. Figure 6 shows the effect of the latent frailty variable on the
default correlation for two companies in our dataset. We see that the latent
factor induces additional correlation and that the effect is increasing as the
time horizon increases.

6.3 Portfolio Loss Risk

In our setting, allowing a common frailty variable increases the potential
for defaults that are clustered in time. In order to illustrate the role of the
common frailty effect in producing default clusters, we consider the distribu-
tion of the total number of defaults from a hypothetical portfolio consisting
of all 1,813 companies in our data set that were active as of January 1998.
We computed the posterior distribution, conditional on the information F;
available for ¢ in January 1998, of the total number of defaults during the
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Figure 6: Default correlation of ICO, Incorporated and Xerox Corporation for the model
with a common frailty (solid line), the model without a frailty (dashed line), and the model

with frailty and unobserved heterogeneity (dotted line).

subsequent five years, January 1998 through December 2002. Figure 7 shows
the probability density of the total number of defaults in this portfolio for
three different models. All three models have the same posterior marginal
distribution for each firm’s default time, but the joint distribution of default
times varies among the three models depending on how the common frailty
process Y is substituted for each firm ¢ with a firm-specific process Y; that
has the same posterior probability distribution as Y. Model (a) is the fitted
model with a common frailty variable, that is, with Y; = Y. For model (b),
the initial condition Y;; of Y; is common to all firms, but the future evolu-
tion of Y; is determined not by the common OU-process Y, but rather by an
OU-process Y; that is independent across firms. Thus, Model (b) captures
the common source of uncertainty associated with the current posterior dis-
tribution of Y;, but has no common future frailty shocks. For Model (c),
the hypothetical frailty processes of the firms, Yi,...,Y,,, are independent.
That is, the initial condition Yj, is drawn independently across firms from
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the posterior distribution of Y;, and the future shocks to Y; are those of an
OU-process Y; that is independent across firms.

One can see that the impact of the frailty effect on the portfolio loss
distribution is substantially affected both by uncertainty regarding the cur-
rent level Y; of common frailty in January 1998, and also by common future
frailty shocks to different firms. Both of these sources of default correlation
are above and beyond those associated with exposure of firms to observ-
able macroeconomic shocks, and exposure of firms to correlated observable
firm-specific shocks (especially correlated changes in leverage).

In particular, we see in Figure 7 that the two hypothetical models that
do not have a common frailty variable assign virtually no probability to the
event of more than 200 defaults between January 1998 and December 2002.
The 95-percentile and 99-percentile losses of the model (c¢) with completely
independent frailty variables are 144 and 150 defaults, respectively. Model
(b), with independently evolving frailty variables with the same initial value
in January 1998, has a 95-percentile and 99-percentile of 180 and 204 defaults,
respectively. The actual number of defaults in our dataset during this time
period was 195.

The 95-percentile and 99-percentile of the loss distribution of the ac-
tual estimated model (a), with a common frailty variable, are 216 and 265
defaults, respectively. The realized number of defaults during this event hori-
zon, 195, is slightly below the 91-percentile of the distribution implied by the
fitted frailty model, therefore constituting a rather extreme event. On the
other hand, taking the hindsight bias into account, in that our analysis was
partially motivated by the high number of defaults in the years 2001 and
2002, the occurrence of 195 defaults might be viewed as an only moderately
extreme event for the frailty model.

7 A Bayesian Approach

Until this point, our analysis is based on maximum likelihood estimation of
the frailty mean reversion and volatility parameters, x and o. Uncertainty re-
garding these parameters could lead to an increase in the tail risk of portfolio
losses, which we next investigate.

The stationary variance of the frailty variable Y} is

0_2

o2 = lim var (Y;|G;) = lim var (Y, |Y;) = o
§—00 K

§—00
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Figure 7: The conditional probability density, given F; for ¢ in January 1998, of the
total number of defaults within five years from the portfolio of all active firms at January
1998, in (a) the fitted model with frailty (solid line), (b) a hypothetical model in which
the common frailty process Y is replaced with firm-by-firm frailty processes with initial
condition at time t equal to that of Y, but with common Brownian motion driving frailty
for all firms replaced with firm-by-firm independent Brownian motions (dashed line), and
(c¢) a hypothetical model in which the common frailty process Y is replaced with firm-
by-firm independent frailty processes having the same posterior probability distribution
as Y (dotted line). The density estimates are obtained with a Gaussian kernel smoother

(bandwidth equal to 5) applied to a Monte-Carlo generated empirical distribution.
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Figure 8: Marginal posterior densities, given Fr, of the frailty volatility parameter 7

and the frailty mean reversion rate x in the Bayesian approach of Section 7.

Motivated by the historical behavior of the posterior mean of the frailty, we
take the prior density of the stationary standard deviation, o, to be Gamma
distributed with a mean of 0.5 and a standard deviation of 0.25. The prior
distribution for the mean-reversion rate « is also assumed to be Gamma, with
a mean of log2/36 (which corresponds to a half-life of three years for shocks
to the frailty variable) and a standard deviation of log2/72. The joint prior
density of ¢ and k is therefore of the form

e () o (55 ()

Figure 8 shows the marginal posterior densities of the volatility and mean
reversion parameters of the frailty variable. Figure 9 shows their joint pos-
terior density. These figures indicate considerable posterior uncertainty re-
garding these parameters. From the viewpoint of subjective probability, es-
timates of the tail risk of the portfolio loss distribution that are obtained
by fixing these common frailty parameters at their maximum likelihood es-
timates might significantly underestimate the probability of certain extreme
events.
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Figure 9: TIsocurves of the joint posterior density, given Fr, of the frailty volatility

parameter 77 and mean reversion rate .

Although parameter uncertainty has a minor influence on portfolio loss
distribution at intermediate quantiles, Figure 10 reveals a moderate impact
of parameter uncertainty on the extreme tails of the distribution. For exam-
ple, when fixing the frailty parameters n and x at their maximum likelihood
estimates, the 99-percentile of the portfolio default distribution is 265 de-
faults. Taking posterior parameter uncertainty into account, this quantile
rises to 275 defaults.

8 Out-of-Sample Accuracy

Given a future time horizon and a particular default prediction model, the
“power curve” for out-of-sample default prediction is the function f that
maps any x in [0,1] to the fraction f(x) of firms that default before the
time horizon that were initially ranked by the model in the lowest fraction
x of the population. For example, for the model without frailty, on average
over 1993 to 2004, the highest quintile of firms ranked by estimated default
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Figure 10: Density, on a logarithmic scale, of the number of defaults in the portfolio
when fixing the volatility and mean reversion parameter at their MLE estimates (dashed
line), and in the Bayesian estimation framework (solid line). The density estimates were
obtained by applying a Gaussian kernel smoother (with a bandwidth of 10) to the Monte
Carlo generated empirical distribution.

probability at the beginning of a year accounted for 92% of firms defaulting
within one year. Power curves for the model without frailty are provided in
Duffie, Saita, and Wang (2006).

The “accuracy ratio” of a model with power curve f is defined as

2 / (f(2) - r(a)) da,

where x — r(z) = x, the identity, is the expected power curve of a completely
uninformative model, one that sorts firms randomly. So, a random-sort model
has an expected accuracy ratio of 0. A “crystal ball” perfect-sort model has
an accuracy ratio of 1 minus the total ex-post default rate. The accuracy ratio
is a benchmark for comparing the default prediction accuracy of different
models.
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Figure 11: Out-of-sample accuracy ratios (ARs), based on models estimated with data
up to December 1992. The solid line provides one-year-ahead ARs based on the model
without frailty. The dashed line shows one-year-ahead ARs for the model with frailty. The
dash-dot line shows 5-year-ahead ARs for the model with frailty.

As indicated in Duffie, Saita, and Wang (2006), the accuracy ratios of
our model without frailty are an improvement on those of any other model
in the available literature. As shown in Figure 12, the accuracy ratios of
our model are essentially unaffected by allowing for frailty. This may be
due to the fact that, because of the dominant role of the distance-to-default
covariate, firms generally tend to be ranked roughly in order of their distances
to default, which of course do not depend on the intensity model. Accuracy
ratios, however, measure ordinal (ranking) quality, and do not fully capture
the out-of-sample ability of a model to estimate the magnitudes of default
probabilities. Our results, not reported here, suggest that the frailty model
that we have proposed does not improve the out-of-sample accuracy of the
magnitudes of firm-level estimates of default probabilities, over the model
without frailty. This is a topic of ongoing research.

33



9 Concluding Remarks

This paper finds significant evidence among U.S. corporates of a common un-
observed source of default risk that increases default correlation and extreme
portfolio loss risk above and beyond that implied by observable common
and correlated macroeconomic and firm-specific sources of default risk. We
offer a new model of corporate default intensities in the presence of a time-
varying latent frailty factor, and with unobserved heterogeneity. We provide
a method for fitting the model parameters using a combination of the Monte
Carlo EM algorithm and the Gibbs sampler. This method also provides the
conditional posterior distribution of the Ornstein-Uhlenbeck frailty variable.

Applying this model to data for U.S. firms between January 1979 and
March 2004, we find that corporate default rates vary over time well beyond
levels that can be explained by a model that includes only observable covari-
ates. In particular, the posterior distribution of the frailty variable shows
that the expected rate of corporate defaults was much higher in 1989-1990
and 2001-2002, and much lower during the mid-nineties and in 2003-2004,
than those implied by an analogous model without frailty. Moreover, the his-
torically observed number of defaults in our dataset between January 1998
and December 2002 is far above the 99.9-percentile of the aggregate default
distribution associated with the model based on observable covariates only,
but lies well within the support of the distribution of total defaults produced
by the frailty-based model.

Our methodology could be applied to other situations in which a com-
mon unobservable factor is suspected to play an important role in the time-
variation of arrivals for certain events, for example mergers and acquisitions,
mortgage prepayments and defaults, or leveraged buyouts.

We estimate that the frailty variable represents a common unobservable
factor in default intensities with an annual volatility of roughly 45%. The
estimated rate of mean reversion of the frailty factor, 1.8% per month, implies
that when defaults cluster in time to a degree that is above and beyond that
suggested by observable default-risk factors, the half life of the impact of this
unobservable factor is roughly 3 years. We show that the mean-reversion rate
is difficult to pin down with the available data. Without mean reversion,
however, the variance of the frailty effect would explode over time.

34



Appendices

A Applying the Gibbs Sampler with Frailty

A central quantity of interest for describing and estimating the historical
default dynamics is the posterior density py (- | W, D, 0) of the latent frailty
process Y. This is a complicated high-dimensional density. It is prohibitively
computationally intensive to directly generate samples from this distribution.
Nevertheless, Markov Chain Monte Carlo (MCMC) methods can be used for
exploring this posterior distribution by generating a Markov Chain over Y,
denoted {Y ™} whose equilibrium density is py (- | W, D,6). Samples
from the joint posterior distribution can then be used for parameter inference
and for analyzing the properties of the frailty process Y. For a function f ()
satisfying regularity conditions, the Monte Carlo estimate of

ELf (V) |W,D,9]=/f<y>py<y|w,D,9>dy (13)
is given by

1 & .

¥ ). )

Under conditions, the ergodic theorem for Markov chains guarantees the
convergence of this average to its expectation as N — oco. One such function
f(cot) of interest is the identity, f (y) =y, so that

E[f (V) |W,D.6] = E[Y |W,D,6] = {E (Y| Fr) : 0 < t < T},

the posterior mean of the latent Ornstein-Uhlenbeck frailty process.

The linchpin to MCMC is that the joint distribution of the frailty path
Y ={Y;:0 <t <T} can be broken down into a set of conditional distribu-
tions. A general version of the Clifford-Hammersley (CH) Theorem (Ham-
mersley and Clifford (1970) and Besag (1974)) provides conditions under
which a set of conditional distributions characterizes a unique joint distribu-
tion. For example, in our setting, the CH Theorem indicates that the density

35



py (- | W, D, #) is uniquely determined by the following set of conditional dis-
tributions,

}/O|}/171/27”‘7YT7M/7D79
}/1|}/071/27”‘7YT7M/7D79

YT‘}/(-h}/la"wYbemDaea

using the naturally suggested interpretation of this informal notation. We
refer the interested reader to Robert and Casella (2005) for an extensive
treatment of Monte Carlo methods, as well as Johannes and Polson (2003) for
an overview of MCMC methods applied to problems in financial economics.

In our case, the conditional distribution of Y; at a single point in time
t, given the observable variables (W, D) and given Y/, = {Y,:s#t}, is
somewhat tractable, as shown below. This allows us to use the Gibbs sampler
(Geman and Geman (1984) or Gelman, Carlin, Stern, and Rubin (2004)) to
draw whole sample paths from the posterior distribution of {Y; : 0 <¢ < T}
by the algorithm:

0. Initialize Y; =0 fort =0,...,T.

1. Fort =1,2,...,T, draw a new value of Y, from its conditional distri-
bution given Y{_;. For a method, see below.

2. Store the sample path {Y; : 0 <t < T} and return to Step 1 until the
desired number of paths has been simulated.

We usually discard the first several hundred paths as a “burn-in” sample,
because initially the Gibbs sampler has not approximately converged® to the
posterior distribution of {Y; : 0 <t <T}.

It remains to show how to sample Y; from its condition distribution given
Y(_y. First we note that the conditional distribution of Y; given (W, D) and
given Yy is, by the Markov property of Y, the same as the conditional

8We used various convergence diagnostics, such as trace plots of a given parameter as
a function of the number of samples drawn, to assure that the iterations have proceeded
long enough for approximate convergence and to assure that our results do not depend
markedly on the starting values of the Gibbs sampler. See Gelman, Carlin, Stern, and
Rubin (2004), Chapter 11.6, for a discussion of various methods for assessing convergence
of MCMC methods.
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distribution of Y given (W, D), Y;_1, and Y;1;. Recall that £ (0| W,Y, D)
denotes the complete-information likelihood of the observed default pattern,
where 0 = (3,1, k). For 0 <t < T, Bayes’ rule implies that

p (Y| W,D,Y(4),0) o L(O|W,D,Y) p(Yi|Yiy,0)
= E(@]VV,Y,D)p(Yt\Yt,l,H)p(YtH]Yt,@)7

where p (Y; | Y1, 0) is the one-step transition density of the OU-process (6).

Equation (15) determines the desired conditional density of Y; given Y;_;
and Yy, in an implicit form. Although it is not possible to directly draw
samples from this distribution, we can employ the Random Walk Metropolis-
Hastings algorithm (Metropolis and Ulam (1949), and Hastings (1970)).” We
use the proposal density q(Yt(”) |W,D, Y"1 §) = N(Yt(”_l), 4), that is, we
take the mean to be the value of Y; from the previous iteration of the Gibbs
sampler, and the variance to be twice the variance of the standard Brownian
motion increments'®. The Metropolis-Hastings step to sample Y; in the n—th
iteration of the Gibbs sampler therefore works as follows:

1. Draw a candidate y ~ N(Y," ™V, 4).

2. Compute

L(o1w Y0, Y =y.D)
LW, Yo, D)

« (Y;(n), y) = min 1

3. Draw U with the uniform distribution on (0,1), and let

Yf"):{ y ifU<a<Yt("),y) }

Y™™ otherwise.

9 Alternatively, we could discretize the sample space and approximate the conditional
distribution by a discrete distribution, an approach commonly referred to as the Griddy
Gibbs method (Tanner (1998)). However, the Metropolis-Hastings algorithm is usually a
couple of times faster in cases where the conditional density is not known explicitly.

10We calculated the conditional density for various points in time numerically to assure
that it does not have any fat tails. This was indeed the case so that using a normal proposal
density does not jeopardize the convergence of the Metropolis-Hastings algorithm. See
Mengersen and Tweedie (1996) for technical conditions.
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B With Unobserved Heterogeneity

The Monte Carlo EM algorithm described in Section 3 and the Gibbs sampler
described in Appendix A are extended to treat unobserved heterogeneity as
follows.

The extension of the Monte Carlo EM algorithm is:

0. Initialize Z\” =1 for 1 < i < m and initialize 6 = (3,0.05,0), where
[ is the maximum likelihood estimator of 3 in the model without frailty.

1. (Monte-Carlo E-step.) Given the current parameter estimate ), draw
samples (Y, Z0) for j = 1,...,n from the joint posterior distribu-
tion py.z(- | W, D,0®)) of the frailty sample path Y = {Y; : 0 <t < T}
and the vector Z = (Z; : 1 <i < m) of unobserved heterogeneity vari-
ables. This can be done, for example, by using the Gibbs sampler de-
scribed below. The expected complete-data log-likelihood is now given
by

Q (0,0%) = Eym (logL (0| WY, Z,D))
= /logﬁ(ﬁ\ W,y,z,D)py.z (y,z | VV,D,QU")) dydz. (15)

Using the sample paths generated by the Gibbs sampler, (15) can be
approximated by

Q (6,00 = %ZlogE(G\W,Ym,ZU),D). (16)
j=1

2. (M-step.) Maximize @ (6, 0™)) with respect to the parameter vector 6,
using the Newton-Raphson algorithm. Set the new parameter estimate
§*+1) equal to this maximizing value.

3. Replace k with k 4 1, and return to Step 2, repeating the MC E-step
and the M-step until reasonable numerical convergence.

The Gibbs sampler for drawing from the joint posterior distribution of
{Y;:0<t<T}and {Z;: 1 <i<m} works as follows:

0. Initialize Y; =0 for t = 0,...,T. Initialize Z; =1 fort=1,...,m.
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1. Fort =1,...,T draw a new value of Y; from its conditional distribution
given Y;_ 1, Yi11 and the current values for Z;. This can be done using
a straightforward modification of the Metropolis-Hastings algorithm
described in Appendix A by treating log Z; as an additional covariate
with corresponding coefficient in (1) equal to 1.

2. Fori=1,..., m,draw the unobserved heterogeneity variables 71, ..., Z,,
from their conditional distributions given the current path of Y. See
below.

3. Store the sample path {Y;,0 < ¢ < T'} and the variables {Z; : 1 < i < m}.
Return to Step 1 and repeat until the desired number of scenarios has
been drawn, discarding the first several hundred as a burn-in sample.

It remains to show how to draw the heterogeneity variables Zi,..., Z,,
from their conditional posterior distribution. First, we note that

i=1

by conditional independence of the unobserved heterogeneity variables Z;.
In order to draw Z from its conditional distribution, it therefore suffices to
show how to draw the Z;’s from their conditional distributions. Recall that
we have chosen the heterogeneity variables Z; to be gamma distributed with
mean 1 and standard deviation 0.5. A short calculation shows that in this
case the density parameters a and b are both 4. Applying Bayes’ rule,

p(Zi|W.Y,D,0) o pr(Z;4,4)L(O|W,;,Y, Z;, D)

T;

~ S asar b
o Zletie = H [DadaAt+ (1= Dy)],  (17)

t=t;

where pr (-;a,b) is the density function of a Gamma distribution with pa-
rameters a and b. Plugging (7) into (17) gives

T;

T;
p(Zi|W,Y, D,0) o Zie™ "% exp <— Z j\ite’inZi) H [DitAit + (1 = Dy)]
t=t;

t=t;

(2

D% exp (—ALZ) - { B;Z; if company 7 did default } L (18)

1 if company ¢ did not default
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for company specific constants A; and B;. The factors in (18) can be com-
bined to give

p(Zi | Wi, Y, D, 0) = pr (Zi;4+ D, 4+ Ai) . (19)

This is again a Gamma distribution, but with different parameters, and it is
therefore easy to draw samples of Z; from its conditional distribution.
Table IV shows the MLE of the covariate parameter vector 3 and the
frailty parameters 1 and x, with estimated standard errors shown parenthet-
ically. We see that, while including unobserved heterogeneity decreases the
coefficient 1 of dependence (sometimes called volatility) of the default inten-
sity on the OU frailty process Y from 0.125 to 0.112, our general conclusions
regarding the economic significance of the covariates and the importance of
including a time-varying frailty variable remain. Moreover, Figure 12 shows
that the posterior distribution of the frailty qualitatively remains the same.

Coefficient | Std. error | t-statistic
constant —0.895 0.134 —6.7
distance to default —1.662 0.047 —35.0
trailing stock return —0.427 0.074 —5.8
3-month T-bill rate —0.241 0.027 —-9.0
trailing S&P 500 return 1.507 0.309 4.9
latent factor volatility 0.112 0.022 5.0
latent factor mean reversion 0.061 0.017 3.5

Table IV: Maximum likelihood estimates of the intensity parameters in the model with
frailty and unobserved heterogeneity. Asymptotic standard errors are computed using the

Hessian matrix of the likelihood function at 6 = 6.

C Non-Linearity Check

So far, see (1), we have assumed a linear dependence of the log-intensity on
the covariates. This assumption might be overly restrictive, especially in the
case of the distance to default (DTD), which explains most of the variation
of default intensities across companies and across time. It is indeed possible
that, if the response of the true log-intensity to DTD is faster than linear,
then the latent variable in our current formulation would be higher when
DTDs go well below normal (as is currently observed), and vice versa.
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Figure 12: Conditional posterior mean {F (nY;|Fr):0 <t <T} with one-standard-
deviation bands, for the scaled Ornstein-Uhlenbeck frailty variable nY; in the model that

also incorporates unobserved heterogeneity.

To check the robustness of our findings with respect to the linearity as-
sumptions, we therefore re-estimate the model using a non-parametric model
for the contribution of distance to default, replacing DT D(t) with —log U(t)
in (1), where U(t) = f(DTD(t)), and f(z) is the non-parametric kernel-
smoothed fit of 1-year frequency of default in our sample at distance to
default of x. Figure 13 shows the historical occurrence of different levels of
distance-to-default for 402,434 firm-months, while Figure 14 shows the es-
timated relationship between the current level of DTD and the annualized
default intensity. For values of DT'D < 9, a Gaussian kernel smoother with
bandwidth equal to one was used to obtain the intensity estimate, whereas
due to lack of data the tail of the distribution was approximated by a log-
linear relationship, smoothly extending the graph in Figure 13.

Using this extension, we re-estimate the model parameters as before.
Table V shows the estimated covariate parameter vector 3 and frailty pa-
rameters 77 and K, with “asymptotic” estimates of standard errors of the
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Figure 13: Population density estimate of distance to default for 402,434 firm-months
between January 1979 and March 2004. The estimate was obtained by applying a Gaussian
kernel smoother (bandwidth equal to 0.2) to the empirical distribution.

coefficients given parenthetically.

Comparing Tables IT and V, we see that none of the coefficients link-
ing a firm’s covariates to its default intensity has changed noteworthily. In
particular, the coefficient now linking the default intensity and —log U(t) is
virtually the same as the coefficient for DTD in the original model. Note
however that the intercept has changed from -1.20 to 2.28. This difference
is due to the fact that —logU(t) ~ DT'D — 3.5. Indeed, for the intercept
at DTD = 0 in Figure 14 we have 1071° ~ 0.032 ~ exp(—1.20 — 2.28). In
addition, the posterior path of the latent Ornstein-Uhlenbeck frailty variable
looks as before (not shown here). In view of these findings we decided the
keep the model with a log-linear relationship between a firm’s DTD and its
default intensity.
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Figure 14: Non-parametric estimate of the dependence of annual default frequency on
the current level of distance to default (DTD). For values of distance to default less than 9,
a Gaussian kernel smoother with bandwidth of 1 was used to obtain the intensity estimate.

For DTD larger than 9, a log-linear relationship was assumed.

D Summary of Covariate Time-Series Model

We summarize here the particular parameterization of the time-series model
for the covariates that we adopt from Duffie, Saita, and Wang (2006). Be-
cause of the high-dimensional state-vector, which includes the macroeco-
nomic covariates as well as the distance to default and size of each of almost
3000 firms, we have opted for a Gaussian first-order vector auto-regressive
time series model, with the following simple structure.

The 3-month and 10-year treasury rates, ri; and ry, respectively, are
modeled by taking r; = (114, 72:)" to satisfy

Tir1 = Tt -+ kr(Qr — ’f't) -+ Orr-etJrl R

where €1, €9, . .. are independent standard-normal vectors, C, is a 2 x 2 lower-
triangular matrix, and the time step is one month. Provided C, is of full
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Coefficient | Std. Error | t-statistic
Constant 2.279 0.194 11.8
—log(f(DTD)) —1.198 0.042 —28.6
Trailing stock return —0.618 0.075 —8.3
3-month T-bill rate —0.238 0.030 —-8.1
Trailing S&P 500 return 1.577 0.312 5.1
Latent factor volatility 0.128 0.020 6.3
Latent factor mean reversion 0.043 0.009 4.8

Table V: Maximum likelihood estimates of the intensity parameters 6 in the model
with frailty, replacing distance to default with — log(f(DT D)), where DT'D is distance to
default and f(-) is the non-parametric kernel estimated mapping from DT D to annual
default frequency, illustrated in Figure 14. The frailty volatility is the coefficient n of
dependence of the default intensity on the standard Ornstein-Uhlenbeck frailty process
Y. Estimated asymptotic standard errors were computed using the Hessian matrix of the

expected complete data log-likelihood at 6 = 0.

rank, This is a simple arbitrage-free two-factor affine term-structure model.
Maximum-likelihood parameter estimates and standard errors are reported
in Duffie, Saita, and Wang (2006).

For the distance to default D;; and log-assets V;; of firm 7, and the trailing
one-year S&P500 return, Sy, we assume that

Digra| _ Dt n kp 0 Oip| | D n
Vit Vit 0 kv \ O Vi

b- (0, — 1) op 0
+ [ 0 } + { 0 Uv] Mit+1 5 (20)
Sir1 = St + ks(0s — St) + &1, (21)
where
Nie = Az + By, (22)

& = aguy + Yswy,

for {z14, zat, . ., Znt, wy - t > 1} that are 4id 2-dimensional standard-normal,
all independent of {uq,us, ...}, which are independent standard normals.
The 2 x 2 matrices A and B have A, = Bis = 0, and are normalized so
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that the diagonal elements of AA’ + BB’ are 1. For estimation, some such
standardization is necessary because the joint distribution of 7; (over all
i) is determined by the 6 (non-unit) entries in AA" + BB’ and BB'. Our
standardization makes A and B equal to the Cholesky decompositions of
AA" and BB, respectively. For simplicity, although this is unrealistic, we
assume that € is independent of (n,£). The maximum-likelihood parameter
estimates, with standard errors, are provided in Duffie, Saita, and Wang
(2006), and are relatively unsurprising.
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