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Abstract

We establish y/n-consistency and asymptotically normality of Han’s (1987a) estimator of
the parameters characterizing the transformation function in a semiparametric transformation
model. We verify a Vapnik-Cervonenkis (V' C) condition for the parameterizations of Box and
Cox (1964) and Bickel and Doksum (1981). The verification establishes the V' C property for a
class of sets where nonlinear functions of the transformation parameters are positive. We also
introduce a new class of rank estimators for these parameters. These estimators require only
O(n%logn) computations to evaluate the criterion function, compared to O(n?) computations
for Han’s estimator. We prove that these estimators are also y/n-consistent and asymptotically
normal. A simulation study compares two of the new estimators to Han’s estimator, as well
as to the fully parametric estimator of Bickel and Doksum (1981) and the nonlinear two-stage

least squares estimator of Amemiya and Powell (1981).



1. INTRODUCTION

Han (1987a) analyzes a transformation model of the form

Z(Y,ho) =g+ X'Bo+U (1)

where Y is a scalar response variable, X is a k x 1 vector of nonconstant explanatory variables, and
U is an unobserved error term. In this model, (Y, X) is observed, Z(Y, \g) is an increasing function
of Y known up to the m X 1 vector parameter g, oq is an intercept, and §y is a k X 1 vector of
slope parameters. The object of estimation is 8y = (Ao, @, Bo)-

A leading special case of the transformation function Z(Y, A¢) in (1) is the power transformation
studied by Box and Cox (1964). In this model, m = 1 and Y > 0. The transformation has the
form

Z(Y, ) = (YM —1)/A X >0. (2)

This transformation is generalized by Bickel and Doksum (1981). For Y € IR, their transformation
has the form

Z(Y, o) = (IY[*sign(Y) = 1)/X0 X0 > 0. 3)

Model (1) is either parametric or semiparametric depending on whether or not the functional
form of the distribution of U is assumed to be known. For example, in (3), one could assume that U
is normally distributed with mean zero and finite variance, and estimate 8y by maximum likelihood.
However, in a parametric approach such as this, if the distributional assumption is incorrect, and
especially if some data is contaminated, then standard estimation procedures are susceptible to

large biases. This motivates a semiparametric approach that is not sensitive to outliers in the data.



Han (1987a) estimates 6y semiparametrically in three stages. In the first stage, he estimates
do = Bo/|Po| with the maximum rank correlation (MRC) estimator developed in Han (1985).
Han (1985, 1987b) proves consistency and Sherman (1993) proves y/n-consistency and asymptotic
normality of this estimator. In the second stage, using the estimator of §y, Han (1987a) develops a
consistent rank-based optimization estimator of Ag. In the third stage, using the estimators of dj
and Ao, Han (1987a) constructs consistent estimators of ag and |fSy| using either least squares or
least absolute deviations regression.

This paper focuses on estimation of Ay, the parameter vector that characterizes the transfor-
mation function in (1). A number of semiparametric estimators of Ay have been developed. These
include the nonlinear two-stage least squares (NL2SLS) estimator of Amemiya and Powell (1981)
and a rescaled version of the NL2SLS estimator developed by Powell (1996). These estimators
are special cases of generalized method of moment (GMM) estimators of Ay (see Mittlehammer,
Judge, and Miller, 2000). Other semiparametric estimators of A¢ include the quantile regression
estimator of Powell (1991) and the nonlinear weighted least squares estimator of Foster, Tian, and
Wei (2000). A recent simulation study by Savin and Wurtz (2001) compares the three nonlinear
least squares estimators just mentioned.

In related work, Horowitz (1996), Ye and Duan (1997), Chen (2001), and Klein and Sher-
man (2001) have developed y/n-consistent and asymptotically normal semiparametric estimators
of the transformation function in (1) without making parametric assumptions about its functional
form. (See also Gorgens and Horowitz, 1999.) However, all these estimators require independence
of errors and regressors. In addition, with the exception of Chen’s estimator, they involve the use of
kernel regression estimators requiring subjective bandwidth choices. The estimators of Han (1987a)

(see Remark 1 in Section 4), Powell (1991), and certain GMM estimators (see Mittlehammer et



al. 2000) can be consistent under general forms of heteroscedasticity. Also, no bandwidth choices
are needed to compute either Han’s (1987a) estimator, or the estimators of Amemiya and Pow-
ell (1981), Powell (1991), Foster et al. (2000), or the other GMM estimators.

There are two main drawbacks to Han’s estimator of Ag. First, the limiting distribution of his
estimator has not been established. Han (1987a) conjectured that his estimator was y/n-consistent
with a nonnormal limiting distribution, but provided no proofs. Part of the difficulty in establishing
the limiting distribution of this estimator lies in the fact that it maximizes a discontinuous sample
objective function. This renders standard Taylor series arguments inapplicable and suggests an
approach based on recent developments in empirical process theory. However, the sample objective
function is a generalized average of indicator functions of sets where nonlinear functions of )\
are positive. The nonlinearity of the transformation functions precludes the use of “off the shelf”
empirical process results. Secondly, O(n*) computations are required to evaluate the criterion
function, where n is the sample size. This makes the estimator prohibitively expensive to compute
for moderate to large sample sizes.

The goal of this paper is to repair both of the previously mentioned deficiencies. We estab-
lish a result that lets us deduce the key Vapnik-Cervonenkis (VC) property for the classes of
sets associated with the leading special cases in (2) and (3). This property is sufficient to es-
tablish /n-consistency and asymptotic normality of Han’s estimator, thus proving one part and
disproving the other part of Han’s conjecture. We will then introduce a new class of rank-based
optimization estimators that are also y/n-consistent and asymptotically normal, but only require
O(n?logn) computations to evaluate the objective function, making the estimators practicable for
larger sample sizes. These estimators are adaptations of the rank estimators of §; developed by

Cavanagh and Sherman (1998), and exploit Spearman’s (1904) measure of rank correlation rather



than Kendall’s (1938) measure, on which Han’s estimator is based. The former is computationally
more efficient.

In the next section, we present Han'’s estimator of A\g and state conditions under which the esti-
mator is y/n-consistent and asymptotically normal. We also establish the V C property for the class
of sets associated with the transformation functions in (2) and (3). In Section 3, we establish the
limiting distribution of the estimator and show how to estimate its asymptotic variance-covariance
matrix. In Section 4, we introduce the new class of rank estimators of A\¢ and prove consistency.
We also prove 4/n-consistency and asymptotic normality and indicate how to estimate asymptotic
variance-covariance matrices. Section 5 presents simulation results comparing two of the new esti-
mators to those of Han’s estimator, the Bickel and Doksum (1981) parametric estimator, and the

semiparametric estimator of Amemiya and Powell (1981). Section 6 summarizes.

2. HAN’s ESTIMATOR OF Ay AND CONDITIONS FOR ASYMPTOTIC NORMALITY

Let (Y1,X1),...,(Yn, X,) denote a sample of iid observations from model (1). Let A C R™
denote the parameter space for Ao, and A C IR* the parameter space for d;. Let § denote a

consistent estimator of §y. Han (1987a) proposes estimating Ao with A(§) = argmax Q,, (), §) where
AEA

Qu(r8) = S22 — Z(%,0) > Z(¥i, N) — Z(¥i N X6 — X6 > X}o — XI5}
iq
with 24 = (4,4, k,l) ranging over the (n)s = n(n — 1)(n — 2)(n — 3) ordered 4-tuples of different
integers from the set {1,...,n}. Note that for fixed A and d, @, (A, d) is a fourth-order U-statistic.
A simple principle motivates the estimator. By (1), Z (Y1, Ao) — Z(Y2, Ao) > Z(Y3Xo) — Z(Y4, Ao)
if and only if (U3 — Uy) — (U — Us) < (X1 — X3)'dp — (X3 — X4)'8g. Suppose in (1) that U is
independent of X. Then the random variables (Us —U,) — (U1 —Us) and (X7 — X52) 6o — (X3 —X4)'do
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are independent and symmetric about zero. It follows that given (Y1,Ys,Ys,Yy), if Z(Y1, ) —
Z(Ya, o) > Z(Y3Ao) — Z(Ya, \o), then it is more likely than not that X]dy — X500 > X500 — X} do.
This identifies Ao as the maximizer of the expected value of Qn(\,dy). We also see that A(4)
maximizes Kendall’s (1938) measure of rank correlation between the Z(Y;, ) — Z(Y;, \)’s and the
X6 — X]’-S’s.

Write W for (Y, X) and let W have distribution P on the set W C R ® IR¥. For each w € W,

A€ A, and 6§ € A, define

f(w7 >\’ 5) = g(w7 P’ P7 P’ A’ 6) +g(P’w7 P’ P7 k’ 5)

+ g(P7P’w7P’ A? 6) +g(P’P7P’w7 k’5)

where, for w; = (y;,z;) € W, i =1,2,3,4,

g(’lU1,UJ2,'lU3,UJ4, Aa 6) = {Z(yb >\) - Z(y27 )‘) > Z(y37 )‘) - Z(y4a )‘)}{q’.,l(s - ‘%‘,25 > ‘Tgé - .’L'ZL(S}

— {Z(y1, M) — Z(y2, 20) > Z(y3, Xo) — Z(ya, o) Hz' 6 — 250 > z30 — z6}

and g(w, P, P, P, \,6), for example, is shorthand for P ® P ® Pg(w,-,,-, \,d).

Write P, for the empirical measure that puts mass % on each W; = (Y;,X;). The term
P,[f(-,A,0) — f(P,\,8)] is the projection term in the Hoeffding decomposition (see, for exam-
ple, Serfling, 1980) of Qn(X,8) — Qn(Xo,d). This term, evaluated at § = §, drives the asymptotic
behavior of A(4).

Let h denote an arbitrary function of A and §. Write hy for Vyh, hyy for V) [Vah], hys for
Vs [Vah], and so on. Let ||-|| denote the matrix norm [|(ai;)|| = (3, ; a%j)l/Q. Forw € W, let y(w, &)

denote a function from W to IR™, and let the symbol = denote convergence in distribution.
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We now state conditions implying 1/n-consistency and asymptotic normality of 5\(3)

Al. TheUys,i=1,...,n, are iid.

A2. The X;’s are iid and independent of the U;’s.

A3. X'§ is continuously distributed and U has a nondegenerate distribution.

A4. (),d) is an interior point of A x A, a compact subset of R™ x IRF.

A5. For each A € A, Z(-,)\) is continuous and strictly increasing.

A6. With positive probability, Z(-, A) is differentiable and nonlinear in Z(-, Ag) for A # Ag.

A7, {{(y1,92,Y3,94) : Z(y1,A) — Z(y2,A) > Z(y3,A) — Z(ys,A)} : A € A} is a VC class of sets.
A8. /n(6—&) = VnPyy(+,60)+0p(1) as n — oo, where v/nP,y(+, 80) = N(0, E7(-,d0)v(+,d0)")-

A9. Let N C A x A denote a nondegenerate convex neighborhood of (Ag, dg).
(i) For each w € W, f(w,,-) has continuous mixed third partial derivatives on N.

(ii) There is an integrable function M (w) such that for each w € W and (),d) € N

| Foax(w, X, 6) = fax(w, Ao, 6)|| < M(w)|X — Aol

(iii) E|fr(, Ao, d0)[? < oo.
(iv) E[frar(; Ao, o)l < oo.
(v) The matrix FE fy)(-, Ao, dp) is negative definite.

Assumptions Al through A6 are sufficient to prove strong consistency of A(3). These assump-
tions are slightly weaker than those used by Han (1987a) to prove strong consistency of A(4). In
fact, the assumption of independence between the X;’s and U;’s in A2 is much stronger than nec-

essary. (See Remark 1 after the consistency proof in Section 4.) A7 is a key regularity condition
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used in the normality proof in Section 3. Below, we verify this property for the leading special
cases given in (2) and (3). A8 requires that there be a y/n-consistent and asymptotically normal
first-stage estimator of §y. As mentioned previously, Han’s (1985,1987b) maximum rank correlation
estimator satisfies this condition. One could also use one of the computationally more efficient rank
estimators of Cavanagh and Sherman (1998). These estimators require no subjective bandwidth
choices. The conditions of A9 are standard and are used to support arguments based on Taylor
expansions of f(w,-,-) and its derivatives about Ay and d§y. Note that if Z and the density of W

are sufficiently smooth, then A9(i) through A9(iv) will hold.

Recall that a VC class of subsets of a set S can pick out at most a polynomial number of subsets
from the 2™ possible subsets of an arbitrary set of n points in S (e.g., Pakes and Pollard, 1989).
We will use the next result to verify A7 for the models described in (2) and (3). In the statement
of this result, a real-valued function f(X), A € IR, is said to change sign at a point )\ if either (i)

F(A) <0 for A < Ag and £(A) > 0 for A > Ag or (i) £(A) >0 for A < Ag and f(A) < 0 for A > Xo.

LEMMA 1:  Let h(s,\) be a real-valued function of s € S C IR? and A € A C IR. Let
N(s) denote the number of points at which h(s,-) changes sign. If sup,cg N(s) < B < oo, then

{{s:h(s,A) >0} : A€ A} is a VC class of sets.

PROOF. Let s1,...,s, denote n arbitrary points in S. Write H for {{s: h(s,\) > 0} : A € A}.
We say, for example, that H picks out the subset {s9, s3,s7} from s1,...,s, if there exists a A € A
such that h(s;, A) > 0 for i € {2,3,7} and h(s;,A) <0 for i ¢ {2,3,7}. We will show that H can
pick out no more than Bn + 1 of the 2" possible subsets of s1,...,s,. This will prove the result.

By assumption, for each i, there are at most B points at which h(s;,-) changes sign. The union

of these points contains at most Bn points and partitions A into at most Bn + 1 intervals. Each

10



interval corresponds to an n-tuple of +’s and —’s, where the ith component is a + if h(s;, A) > 0
for each A in the interval, and a — if h(s;, A) < 0 for each X in the interval. Thus, the number of

such n-tuples bounds the number of subsets of s1,...,s, that  can pick out. O

COROLLARY: A7 holds for the models described in (2) and (3).
PrOOF.  Consider model (2). Take s = (y1,92,¥3,y4), S = R%, A = R, and h(s,\) =
y? — y3 — y3 +y2. Simple calculus shows that for each s € S, h(s,-) changes sign at most B = 2

times. The proof for (3) is similar. O

3. THE LIMITING DISTRIBUTION OF HAN’S ESTIMATOR

In this section, we prove that A(8) is y/n-consistent and asymptotically normal, and show how
to estimate its asymptotic variance-covariance matrix.
Write Ty, (A, 68) for (n)1![Qn(},8) — Qn(Xo,d)] and T'(A,8) for IET,(A,d). Note that A(§) =

argmax ', (), 8) and Ao = argmax (X, &o). Finally, write 7(, ) for TEf (-, 0).
XA XEA

THEOREM 2: If A1 through A9 hold, then
Vr(A() = X)) = N0,V izv Y
where

1
vV = ZEf,\/\('a)\oﬁo)

S = EI[fa( A, 00) + 7(Ao, 60)7(, 80)] [fA (-5 Mo, d0) + 7( Ao, 80)7 (-, 0)] -

11



PROOF. Under Al through A6, Han (1987a) proved that [A(§) — Ao| = 0,(1) as n — co. We

will show that uniformly in 0,(1) neighborhoods of (Ag, do),

1

o 1
L'n(A,0) = 50\ —X0)'V(A=Xo) + ~

(A = 20) Wa + 0p(|(X = 20)[*) + 0p(1/n) (4)

g

where W, converges in distribution to a N(0,¥) random vector. Then A9(v), (4), and Theorem 1

in Sherman (1993) will imply that

[(A(0) = X)l = 0,(1/v/n) - ()

The result will then follow from (4), (5), and Theorem 2 in Sherman (1993).
Write Uy p, for the probability measure that puts mass 1/(n); on each k-tuple (W;,,..., W;,),

k =2,3,4. Apply a version of the Hoeffding decomposition (see Sherman, 1994, p.449) to write

Fn()‘aé) = F(A’5)+Pn[f('7)"5)_f(Pa)"d)]

+ U2,nf2('7 ) )‘a 5) + U3,7Lf3('a R >‘7 5) + U4,nf4('a ERER) Aa 6)

where fi, is a degenerate U-statistic of order k, k = 2, 3, 4.

Apply A3, A7, Lemma 2.12 in Pakes and Pollard (1989), Lemma 6 and Corollary 8 in Sher-
man (1994), and argue as in Theorem 4 of Sherman (1993) to see that the degenerate U-processes
of order two, three, and four can be neglected. That is, uniformly over o,(1) neighborhoods of
(Ao, do),

(X, 8) =T(X,0) + P [f(-, A, 8) — f(P, A, 6)] +0p(1/n).

12



Deduce that uniformly over o, (1) neighborhoods of (g, do),

~

Tn(A,8) =T(\8) + Po [£( 0, 8) = F(P, X, 8)] + 0p(1/m). (6)

Next, we show that uniformly over o,(1) neighborhoods of (Ag, do),

1

INOW) 7

(A= 20)" [VnPur(A0,00)7(, do) + 0p(1)] + %(A = 20)'V(A=X0) +op(|(A=20)[*) . (7)

The term +/nP,7(Ag, d0)7(-,d0) quantifies the penalty paid for having to estimate Jp.

Fix w € W and (), ) € N. Invoke A9(i) and expand f(w, A, d) about A = A\g to get
Fw,2,8) = (= M) fal, 20,8) + 3 (0= o) fan(a0, 2°, )X = Do) 0
for \* between ) and Xo. By A9(ii), for each w € W and each (\,5) € A’
IO Do) far a2, 8) = Faalow, do, A — Xa)l| < M(2)|(1 = Do)l )

Invoke (9) and the integrability of M, then take expectations in (8) and evaluate at § = § to get

that uniformly over o,(1) neighborhoods of (g, do),
A A 1
AT (A, 8) = (A = X0) B+, 2o, 0) + 5 (A = 20)"4V(A = Xo) + o(|(A = X))

Since T'(A, dp) is maximized at A = Ao, EEfx(-, Ao, d9) = 0. By a Taylor expansion about § = dy,
Efr(-,20,0) = Efxs(-, Mo, 5*)(8 — o) where 6* is between & and 6y. Divide through by 4 and apply

A8 and A9(i) to establish (7).
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Next, we show that uniformly over o,(1) neighborhoods of (g, o),

Pn [f(v’\’ 8) - f(P’Aaé)] = %()‘ - )‘O)I [\/ﬁpan('aA0550) + Op(l)] + O(M - A0|2) . (10)

Note that f(-,Ag,0) = 0 for all §. Also, since f(P,\,d) = 4T'(A,8), fa(P, Ao, d0) = 0. Condition
(10) then follows from A9(i) and a Taylor expansion about A = A\ followed by a Taylor expansion
about ¢ = 4.

Conditions (6), (7), and (10) imply condition (4). This proves the result. O

We now develop consistent estimators of V' and ¥ in Theorem 2. We use numerical derivatives,
as in Pakes and Pollard (1989). (For ease of notation, we present one-sided difference quotient
estimators. Since the criterion function is a step function, centered difference quotient estimators
perform better in practice, especially for small to moderate sample sizes.) Alternatively, one could
develop expressions for V and ¥ in terms of model primitives and estimate components nonpara-
metrically, as is done in Cavanagh and Sherman (1998). However, we do not do so here.

Recall the definition of f(w, A, d) given in Section 2. Also, recall that (n)s = n(n—1)(n—2) and
U3, denotes the probability measure that puts mass 1/(n)3 on each 3-tuple (W;, W;, W}), where
(1,7, k) ranges over the (n)s ordered 3-tuples of different integers from the set {1,...,n}. For each

wEW,A€EA, and § € A, define
fn(waAa 6) = U3,TL [g('lU, RN '7>‘7 6) +g('aw7'a'7>\a6) +g(a ',’UJ,',)\,(S) +g(a ',',U),)\,(S)] .

Note that FEf,(w,\,d) = f(w, A, §). Standard U-process arguments, such as those given in the

14



proof of Theorem 2, imply that as n — oo,

sup |fn(w, A, 8) — f(w, A, 8)| = Op(1/v/n). (11)
WxAXA

Write fi(w,),d) for the ith component of fy(w,2,§), f;%(w, A, 0) for the ijth component of
Frs(w, A, 6), and f;{\(w, A, 0) for the ijth component of fyy(w, A, d). Assume, for simplicity, that all
these partial derivatives are bounded in a neighborhood of (Ao, d¢). Let {gn}, {rn}, {sn}, and {t,}
denote sequences of real numbers converging to zero as n — co. Let {u1,...,un} and {vi,...,vx}

denote standard bases for IR™ and IR*, respectively. Define

Bw,\0) = g, [fu(w, A+ gntis, §) — fu(w, X, 6)]
f;\%(w, Ad) = r;lsgl [fn(w, A+ 1pui, 6 + spv5) — fr(w, X, 0 + sp05) — fu(w, A + 1u;,8) + fn(w, A, 0)]

(w0 8) = 432 [fu(w, A+ to(ui + 1)), 0) — fa(w, A+ tatuj, ) — fo(w, X+ tnui, 6) + fu(w, A, 0)] .

Deduce from this, (11), and a one-term Taylor expansion of the population difference quotients
about (g, dg) using the boundedness and continuity (A9(i)) of the partial derivatives near (Ag, do)

and the y/n-consistency of (A\(4),d), that as n — oo,

Filw,X(8),8) = fi(w, Ao, 80) +0(1) + g5 0p(1/+/n)
Fiw,A8),8) = fi(w, X, ) +o(1) + 1y ts, 1 0p(1/v/n)

FRAD),8) = [, x0,00) +0(1) + 1;20,(1/v/n)

where the o(1) terms and the O,(1/4/n) terms are uniformly bounded. Choose the sequences {gy},

15



Tnts 18n, Al nt SO that as n — 00, gu/N — 00, TRSp/M — o0, and {7 4/n — 00. Define
d{t h dt2 Defi

Aw,x8) = (fi(w,,8),.... f{(w,2,9)
f/\J(wa )‘,5) = (f;\%(wa)‘a 5))m><k
./?/\/\(wa )‘,5) = ( A;&(W,Aa(s))mxm

1 A
7(A,6) = ZPnfM(-, A, 0).

Finally, define

V = ipnf/\)\('a 5‘(8)’ 8)
S = Pu[AGAG)) + 230,090, 5)] [/ A6),6) +#(3E). ()]

Deduce from the previous arguments and the consistency of (A(8),8) for (Ao, do) that V and &

consistently estimate their population counterparts.

4. A NEw CLASS OF RANK ESTIMATORS OF )

In this section, we introduce a new class of rank estimators of Ay that require only O(n?logn)
computations to evaluate the objective function. These estimators are adaptations of the rank
estimators of §y developed by Cavanagh and Sherman (1998). We prove consistency, and then
establish 4/n-consistency and asymptotic normality and indicate how to estimate the variance-
covariance matrices.

Let M denote an increasing function on JR. For real numbers a;j, 1 = 1,...,n, j = 1,...,n,

i # j,let Ry(ai;) = Zs#{ast < aj;}, the rank of a;;. Let § denote a consistent estimator of §. We
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propose estimating Ag with A(§) = argmax Q, (), §) where
AEA

Qn(X,8) =D Ra(Z(Yi, N) — Z(Y}, \)) M(X;6 — X;5). (12)
i#]
For ease of notation, we suppress the dependence of A(6) on M. Note that when M (aij) = Rn(aij),
then Qn(A,d) is a linear function of Spearman’s (1904) measure of rank correlation between the
Z(Yi,A) — Z(Yj,A\)’s and the X6 — X7d’s. (See also Lehmann 1975, Chapter 7.) Since sorting m
numbers requires only O(mlogm) computations (e.g., Aho et al., 1976, Section 3.4), we see that
only O(n?logn) computations are needed to evaluate Q, (), ).

Maximum robustness is achieved by choosing M (a;;) = R,(a;;). However, more efficiency may
be obtained by choosing a deterministic specification like M (z) = z. An intermediate choice is the
winsorized function M(z) = a{z < a} + z{a < z < b} + b{z > b} for a < b. See Cavanagh and
Sherman (1998) for more discussion on specifying M.

When M is deterministic, we make the following assumptions:

A10. M is a continuous, nonconstant, increasing function on the support of X{8§ — X54.

All. supsen B [M(X!6 — X56))* < .

Continuity in A10 can be relaxed to almost-sure continuity. Also, note that A1l is trivially
satisfied when M is bounded, as when M (z) is the winsorized function defined above.

We now prove consistency of 5\(5) when M is deterministic. In a remark after the proof of
Theorem 3, we show how the proof easily extends to cover the case M(a;;) = Ry(a;;). The idea
behind our identification proof is similar to Han’s (1987a). However, we give our own proof since

we could not follow the details of Han’s proof.

THEOREM 3: Suppose M is deterministic and |(§ — 00| = 0p(1) as n — oco. If Al through A7,
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A10, and A11 hold, then |A(6) — Xo| = 0p(1) as n — oco.

PROOF. Expand the rank function in (12) into a sum and throw away terms with equal indices.
These terms are negligible, asymptotically. Divide by (n)s and, abusing notation slightly, let
Qn (A, 8) denote this new objective function. Define Q(X,d) = EQ,(\, ) = E{Z(Y1,\)—Z(Ys,\) >
Z(Ya, \) — Z(Y2, \)}M (X! — X16).

We will show
(i) Q(A,dp) is uniquely maximized at Ag.
(ii) suppen |@n(X,8) — Q(X,80)| = 0,(1) as n — oo.
(iii) Q(A,do) is continuous on A.
Consistency then follows from standard arguments (e.g., Amemiya 1985, pp.106-107).

Write Y for (Y1,Ys,Ys,Y)). Define

AX;;(8) = Xjé— X}é
Hi5(Y,8) = E[M(AX12(6))|Y]
H34(Y, (50) = F [M(AX?A((SO)) | Y]

AZii(N) = Z(Yi,N) = Z(Y;,N).
By symmetry,

Q()\, 5()) = %E [{A212(/\) > AZg4()\)}H12(Y,(50) + {AZIQ()\) < AZ34()\)}H34(Y, 5())] . (13)
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Write AU for (Us — Uy) — (U; — Up) and AX for AX12(dp) — AX34(d0). Recall from (1) that

AZlg(A()) > AZ34()\0) — AU < AX.

By Al and A2, AU and AX are independent and symmetric about zero. By Bayes’ Theorem,

P{AX >0| AU < AX} P{AU < AX | AX > 0}P{AX > 0}/P{AU < AX}

P{AX <0| AU < AX} P{AU < AX | AX < 0}P{AX < 0}/P{AU < AX}.

By symmetry, P{AX > 0} = P{AX < 0}. By independence and symmetry,

P{AU < AX | AX > 0} > P{AU < AX | AX < 0}. (14)

Deduce that

P{AX >0| AU < AX} > P{AX < 0| AU < AX}. (15)

It follows from condition (15) and A3 that on a set of probability one,

AZlg()\o) > AZ34()\0) — P[AXlQ((SO) > AX34((50) | Y] > P[AXlQ((SO) < AX34((50) | Y] .

In other words, on a set of probability one, AZ15(\g) > AZs4(Ao) if and only if the distribution of
AX given Y puts more probability mass on points for which AX32(d9) > AX34(dp) than on points
for which AXj2(dp) < AX34(dp). Deduce from this, A3, and the fact that M is nonconstant and

increasing, that

AZ12(>\0) > AZ34()\0) <~ H12(Y, 5()) > H34(Y, (50) . (16)
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When A = )\, the indicator functions in (13) pick out the larger of Hi2(Y,dp) and Hs4 (Y, dp)-
This happens with probability one by A3 and A5. Thus, Q(A,dp) is maximized at A.
To show that Ao is the unique maximizer of Q(X,dy), we show that Q(Xg,d0) > Q(A,dy) for

A # XAo. From (13), we get that

Q(%0,50) — Q(A,80) = %E[({AZQ(AO) > AZu(Mo)} — {AZis(A) > AZes(N}) Hia(Y, 60)

+({AZ12(A0) < AZg4(A0)} — {AZlQ(A) < AZ34(A)})H34(Y,(50)] .

Write (A, B,C, D) for the value of the vector of four indicator functions in the last expression.
That is, A = {AZ12(Ao) > AZss(No)}, B = {AZ12(N) > AZ3a(N)}), C = {AZ12(Xo) < AZza(No)},
and D = {AZj2(A\) < AZ34(N)}). On a set of probability one, there are four possible values
for (A,B,C,D): (1,0,0,1), (1,1,0,0), (0,0,1,1), and (0,1,1,0). The contribution to Q(XAg,dy) —
Q(A, o) from the second and third 4-tuples is zero. The contribution from the first and fourth
4-tuples is nonnegative by (16). To show that Q(\g,d0) > Q(X,dp), it is enough to show that
the contribution from the first 4-tuple is strictly positive. This will hold if there exists a set
V =Vi x Vo x V3 x Vj such that [[f_; P{Y; € V;} >0and A=D=1o0onV.

For concreteness, first consider model (2). The general proof is similar, as we will show. We

must find a set with positive probability on which the following two conditions hold:

A A A A
’!/10_?/20 > y30_y40

v —vr < y3-—us.
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Equivalently, we seek a set with positive probability on which

v — v > vf —of

V1 — vy < V3 — U4

where v; = y} and a = A\g/A. Note that v; > 0, i =1,2,3,4 and o > 0.
Choose 0 < ry < 11 < 14 < 13 such that ry —r9 = r3 —ry. Fix € > 0 satisfying ¢ < r4 — r; and
€ < (r1 —r2)/2. Fix @ € (0,1). (A similar argument will work for a > 1, as we will show.) Since

r® is increasing and concave in r, for all s € (ro,71) and t € (14 — €,73 + €),

d [0 d «
s lr=s > e lr=t - (17)

Take Vi = (r1 — €,71), Va = (ro,72 + €), V3 = (r3,73 + €), and Vi = (r4 — €,74). By construction,
for all v; € V;,1=1,2,3,4,

V1 — V2 < VU3 — V4.
By the Mean Value Theorem and (17), for all v; € V;, i = 1,2, 3,4,

o (87 « (87
U1 — U3 >’U3 — U

V1 — V2 ’1)3—’04.

Now choose € small enough so that

v —vg > v§ —uf.

If « > 1, let r1, o, Vi, and V5 change respective roles with r3, 74, V3, and V4 in the previous
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argument. This proves condition (i) for model (2).
Consider the general case. Write Z)(y) for Z(y, A). We must find a set with positive probability

on which the following two conditions hold:

Zno(Y1) = Zag(Y2) > Zxo(y3) — Zx,(ya)

Za(y1) — Za(y2) < Zx(ys) — Zx(ya) -

Equivalently, we must find a set with positive probability on which

Zn (25 (01)) = Z0g(Z5 ' (v2)) > Zo(Z5 " (v3)) = Z0g(Z5 ' (v4))

V11—V < V3 — U4

where v; = Z)(y;), 1 =1,2,3,4.

Note that

o 200(2 ) = 24,2 () /242, ().

Thus, d%Z)\O(Z N (v)) is constant on an interval I if and only if Z3,(y) o< Z}(y) for all y for which
Zx(y) € I. By A3 and A6, there is an interval of positive probability on which this does not happen.
Choose 19 < 71 < 14 < r3 from this interval and argue as before to get the general result. This
proves condition (i) for the general case.

Turn to condition (ii). Since b consistently estimates dy, there exists a sequence {e, } of positive

real numbers satisfying e, = o(1) as n — oo for which P{|§ — d| > e,} — 0. It follows that as

n — 00,

sup [Qn(X,0) = QX 60)| < sup  |Qu(X,6) — QX do)| + 0p(1).
AEA AEA,|6—d0|<e€n

22



The first term on the right is bounded by

sup |Qn(X,8) — Q(N,0)| + sup |Q(A,6) — Q(A, do)| -
AEA,[6—b0|<en AEA,[6—do| <en

The first term has order Op(1/4/n) as n — oco. This follows from the fact that Q,(),d) — Q(A,d)
is a zero-mean U-process of order 4, and from standard U-process and empirical process results:
apply A7, the argument in Section 5 of Sherman (1993), and Lemma 2.12 and Lemma 2.14(ii) in
Pakes and Pollard (1989) to see that the kernel of @, (), d§) — Q(A, ) has the requisite Euclidean
properties, then apply A1l and Corollary 7 in Sherman (1994). The second term in the last
expression has order o,(1) as n — co. This follows from the Cauchy-Schwarz inequality, A10, A11,
and a dominated convergence argument. This proves condition (ii).

Condition (iii) also follows from A10, A1l, and dominated convergence. This proves the theo-

rem. Od

REMARK 1. Condition (14) is the key identifying condition in the consistency proof. Note that
independence of the U;’s and X;’s is not needed for this condition to hold. It is sufficient that
AU and AX be either uncorrelated or negatively correlated. For example, if U; = ¢;f(X;), where
f is an arbitrary real-valued function on IRF and ¢; is uncorrelated with f(X;), then AU and
AX are uncorrelated. Thus, :\(5) can be consistent under general forms of heteroscedasticity. In
this setting, Powell’s (1991) quantile regression estimator, for example, could be used to provide a

y/n-consistent, asymptotically normal first-stage estimator of dy.

REMARK 2.  Suppose M(a;;) = Rp(a;j). Expand the rank functions into sums and ignore all
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terms with equal indices to get
Qn(X,8) =D {Z(Yi,N) = Z(Y;,\) > Z(Yx, A) — Z(Yy, N HX[6 — X}6 > X(6 — X[}
i6
with 2¢ = (4,4, k, 1, s,t) ranging over the (n)s = n(n—1)(n—2)(n—3)(n—4)(n—>5) ordered 6-tuples

of different integers from the set {1,...,n}. For fixed X and 4, @ (], ) is a sixth-order U-statistic.

Divide through by (n)g and take expectations. Denote the result by

QA 8) = B{Z(Y1,)\) — Z(Ya,\) > Z(V3,\) — Z(Ya, N HX16 — Xb5 > XL6 — X457} .

Define

Hi5(Y,00) = E[F(AX12(d))]|Y]

H34(Y,50) = E[F(AXM((SO)) | Y]

where F' is the cumulative distribution function of AXj5(dg). The consistency proof goes through as
before with F' playing the role of M. Note, however, that A10 and A1l are automatically satisfied

for M = F.

We now establish the limiting distribution of 5\(5) We consider two cases: M deterministic and
M (aij) = Rn(aij)-
We begin with the case M deterministic. Recall that W = (Y, X)) and W has distribution P on

the set W C R ® IR*. For each w € W, A € A, and § € A, define

f(w7 A’ 6) = g(w’ P7 P7 P7 A’ 6) +g(P7w’ P’ P’ A’ 5)
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+ g(P’P7w,P, A’ 6) +g(P7P,P,w’ A,5)
where, for w; = (y;, z;) € W, i =1,2,3,4,

g(wl,’IUQ,’lU3,w4,)\, 5) = {Z(ylﬂ)‘) _Z(y27/\) > Z(y3a)‘) _Z(y4a/\)}M(‘fB,15_$,25)
— {Z(y1,X0) = Z(y2, 20) > Z(y3, M) — Z(ys, M) } M (215 — x50)
and, as before, g(w, P, P, P, \,d), for example, is shorthand for P ® P ® Pg(w,-,-,-, A, ).

THEOREM 4: Suppose M is deterministic. If f is defined as in the previous paragraph and Al
through A11 hold, then

V(A(8) = do) = N(0,V'nV )

where

1
V = ZEf)\)\('a)\Oa‘SO)

S = E[fr(; 0, 00) 4 7(Aos 80)v(, 80)] [F2(+5 Ao, 80) + 7(Xo, o)y (-, 60)]" -

The proof of Theorem 4 is identical to the proof of Theorem 2.

Next, we consider the case M (a;;) = Ry(a;j). For each w € W, A € A, and § € A, define

f(w7 >\7 6) = g(w’ P’ P7 P’ P’ P’ >\’ é‘) +g(P’w’ P7 P’ P’ P’ >\’ 5) +g(P’ P’ w7 P’ P’ P’ >\’ 5)

+ g(P,P,P,w,P,P,\,6) +g(P,P,P,P,w,P,\,6) + g(P,P,P, P, P,w, \, )
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where, for w; = (y;,z;) € W, i=1,2,3,4,5,6,

glw, .. we, A 0) = {Z(y1,N) — Z(y2, \) > Z(ys, A) — Z(ya, ) Hz10 — 750 > 550 — 750)}

— {Z(y1, M) — Z(y2, X0) > Z(y3, Ao) — Z(ya, Ao) Hz1 0 — 258 > x50 — 0)} .

THEOREM 5:  Suppose M(a;j) = Ry(asj). If f is defined as in the previous paragraph and Al
through A9 hold, then

Vr(A(d) — X)) = N(0, VIV

where

1
V = EEf)\/\('a)\Oa(SO)

S = EI[fa( A, 00) + 7(Ao, 60)7(, 80)] [fA (-5 Mo, d0) + 7( Ao, 80)7 (-, 60)] -

Apart from cosmetic differences, the proof of Theorem 5 is identical to that of Theorem 2.
We close this section by noting that the variance-covariance matrices in the last two theorems

can be estimated using numerical derivatives as prescribed in Section 3 for Han’s estimator.

5. SIMULATIONS

In this section, we present simulation results comparing two of the new rank estimators of Ag
to Han’s estimator, the Bickel and Doksum (1981) parametric estimator under normality, and the
semiparametric NL2SLS estimator of Amemiya and Powell (1981).

We choose M (a;;) = Ry(ai;) for the first new rank estimator, and M (t) = ¢ for the second. We

call these estimators Rank; and Ranks, respectively. Since the focus of this paper is estimation of
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Ao, we take dp as known and estimate g in model (3). Specifically, for Ay > 0, we take

(JY Posign(Y) —1)/Xo = X +u.

We take \g = .5,1,2, the sample size n = 50, 100,200, and the distribution P of u to be normal
(N), exponential (E), and gamma with parameters (.5,2) (G). Thus, G is distributed x?(1). All
error distributions are independent of X, centered to zero mean, and rescaled to have standard
error v/.5. In each simulation, the distribution of X is normal with mean zero and standard error
V/5. Thus, the signal to noise ratio in each simulation is about 3 to 1. The number of replications
in each simulation is 50. This parallels the simulations done by Han (1987a). In addition, we
estimate a contamination model (C). In this model, P = N, and for each simulation, we choose
one of the n Y values at random and replace it with 2 max;<;<,Y;. For the NL2SLS estimator,
we take the instrument matrix W to be the n x 2 matrix consisting of a column of ones and a
column of X values (see Amemiya and Powell, 1981, p.356). In each replication, we estimate Ag
with a naive grid search: we lay down a grid of 500 points spaced .01 units apart on [0,5] and
take \ to be the maximizer of the appropriate criterion function over these points!. When there
is an interval of maximizers, we take X to be the midpoint of the interval. For each simulation,
we compute the mean of the estimators as well as the root mean squared error (RM SE) based on
the 50 replications. We also compute computation times for each simulation®. The results for the
estimators of Bickel and Doksum, Han, and the two new rank estimators are given in Table 1. The
results for the NL2SLS estimator are given in Table 2.

In models N, E, and G, corresponding to the different error distributions, we see that for sample

'For all simulations in which Ao = .5, we lay down a grid of 400 points spaced .005 units apart on [0, 2].
2Because of the computational burden involved in computing Han’s estimator, we only simulated his estimator
for n = 200 when P = C.
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sizes of 100 and 200 and for all choices of Ay, all the estimators do reasonably well in terms of bias
and RM SE, with the parametric estimator and NL2SLS comparable and having a slight edge over
Han’s, Han’s having a slight edge over Ranks, and Ranks having a slight edge over Rank;. Recall
that the parametric estimator is calculated under the assumption of normal errors. We find its
relatively good performance under all three error distributions surprising. Han (1987a) obtained
similar results. Except for the NL2SLS estimator, there is a slight deterioration in performance in
terms of bias for all the estimators as skewness in the error distribution increases. However, for
the contamination model C, the performance of the parametric estimator degrades substantially
for all choices of Ay and all sample sizes. The NL2SLS estimator performs better than the para-
metric estimator, but not as well overall as the rank-based estimators. The rank-based estimators
perform well for all choices of A\ for sample sizes of 100 and 200. Overall, Han’s estimator slightly
outperforms Ranks, and Ranks slightly outperforms Ranki. Han’s estimator does well even when
n = 50.

In terms of computation time, the new rank estimators substantially dominate Han’s estimator.
For model C' it took over 70 hours to perform one simulation for Han’s estimator for a sample
of size 200, whereas it took only about 12 minutes for either of the new rank estimators. The
simulation programs were written in C and were run on a 450 Megahertz Toshiba/Satellite PC
with 64 Megabytes of RAM.

We also generated histograms for four of the estimators when n = 200 and P = N. The results
appear in Figure 1. It appears that the normal approximation may be reasonable for this model

even for the semiparametric estimators at n = 200.

6. SUMMARY

This paper establishes /n-consistency and asymptotically normality of Han’s (1987a) estimator
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of the parameters characterizing the transformation function in a semiparametric transformation
model. We verify a key Vapnik-Cervonenkis (V' C) condition for the parameterizations of Box and
Cox (1964) and Bickel and Doksum (1981). The verification establishes the V'C property for a class
of sets where nonlinear functions of the transformation parameters are positive.

We also introduce a new class of rank estimators for the transformation parameters and establish
\/n-consistency and asymptotic normality. These estimators require only O(n?logn) computations
to evaluate the criterion function, compared to O(n*) computations for Han’s estimator. This is
achieved by exploiting Spearman’s (1904) measure of rank correlation rather than Kendall’s (1938)
measure, on which Han’s (1987a) estimator is based. The former is more computationally efficient.

A simulation study compares the new estimators to Han’s estimator, as well as to the fully
parametric estimator of Bickel and Doksum (1981) and the semiparametric NL2SLS estimator of
Amemiya and Powell (1981). In these simulations, Han’s estimator slightly outperforms the new
rank estimators in terms of bias and root mean squared error, but takes over 400 times longer to

compute for a sample of size 200.
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NL2SLS Simulation Results

Ao n | P | mean | RMSE

0.5 50 | N | 0.498 0.039
0.5 | 100 | N | 0.504 0.027
0.5 | 200 | N | 0.502 0.020
0.5 50 | E | 0.506 0.034
0.5 | 100 | E | 0.492 0.028
0.5 | 200 | E | 0.495 0.018
0.5 50 | G | 0.504 0.040
0.5 | 100 | G | 0.496 0.018
0.5 | 200 | G | 0.501 0.017
0.5 50 | C | 0.447 0.069
0.5 | 100 | C | 0.466 0.069
0.5 | 200 | C | 0.480 0.028
1 50 | N | 1.010 0.066
1100 | N | 1.000 0.048
1|200 | N | 1.006 0.037
1 50 | E | 1.008 0.074
1100 | E | 1.001 0.055
1|200 | E | 1.006 0.031
1 50 | G | 1.024 0.065
1]100 | G | 1.007 0.050
11200 | G| 0.998 0.034
1 50 | C | 0.843 0.177
1 (100 | C | 0.904 0.116
11200 | C| 0.964 0.051
2 50 | N | 1.998 0.083
2 | 100 | N | 1.993 0.072
2 (200 | N | 2.010 0.050
2 50 | E | 2.035 0.123
2 | 100 | E | 2.011 0.087
2| 200 | E | 2.009 0.069
2 50 | G | 2.000 0.081
21100 | G | 2.002 0.064
21200 | G| 2.013 0.037
2 50 | C | 1.673 0.357
21100 | C | 1.846 0.195
21200 | C| 1.928 0.101

Table 2: In all simulations, the number of replications equals 50.
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