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1 Introduction 
Conventional asset pricing theory suggests that investors should not be 

compensated for bearing idiosyncratic risk. However, recent empirical evidence has 

questioned this fundamental premise. Recent papers find that idiosyncratic risk is 

correlated with expected returns both at the market and the individual stock level, 

although there is disagreement on the direction of the impact. For example, Goyal and 

Santa-Clara (2003) find that the volatility of equal-weighted portfolios is positively 

correlated with future market returns.1 However, at the individual stock level, Ang, 

Hodrick, Xing, and Zhang (2006a; henceforth AHXZ) find that stocks with high 

idiosyncratic risk earn low subsequent returns. This relation is economically large with 

annualized alphas from the Fama and French (1993) three-factor model of approximately 

-14% (AHXZ pp. 285). This paper attempts to provide an explanation for this anomaly. 

It is intuitively more appealing to expect higher rather than lower returns for 

stocks with high volatility.2  This paper, explores the hypothesis that skewness is 

responsible for the low returns to highly volatile stocks. There are several reasons to 

investigate the effect of skewness in this context. First, the relation between idiosyncratic 

volatility and returns is visible only in the most volatile stocks. Stocks with exceptionally 

high volatility are likely to have positive skewness, given the limited liability nature of 

equity.3 Second, a preference for skewness is theoretically consistent with low expected 

returns, unlike a preference for variance which suggests risk-seeking behavior. It is also 

interesting to note parallels with the literature on gambling, which initially found that 

agents accept gambles with high variance and low expected returns, consistent with risk 

seeking behavior. However Golec and Tamarkin (1998) find that this behavior is driven 

by a preference for skewness not variance. Although the stock market is very different 

from the race track, there is substantial research that investigates the relation between 

                                                 
1 Bali, Cakici, Yan, and Zhang (2005) find that this relationship is weaker in an extended sample. 
2 For example, Merton (1987) describes a model where idiosyncratic volatility leads to higher expected 
returns in the absence of complete information. 
3 Simkowitz and Beedles (1978), Conine and Tamarkin (1981) and Duffee (1995), among others, show that 
individual stocks are positively skewed. Conine and Tamarkin (1981) also suggest that limited liability may 
cause positive skewness. Also, I find that stocks with high idiosyncratic volatility have positively skewed 
returns and that high volatility predicts future skewness even after controlling for past skewness (Chen, 
Hong and Stein, 2001, also report a similar result). 
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skewness and expected returns in equity markets. Prior research, for example, Kraus and 

Litzenberger (1976), Harvey and Siddique (2000), and Dittmar (2002), shows that co-

skewness with the market is an important determinant of expected returns. Also, Barberis 

and Huang (2005) show that in a model where agents have utility functions based on 

prospect theory, idiosyncratic skewness earns a premium. 

I first present new stylized facts about the AHXZ puzzle that help relate it to 

skewness. There is substantial co-movement between stocks with high idiosyncratic 

volatility, measured as in AHXZ. I form five portfolios based on size that track the excess 

returns of stocks with high idiosyncratic risk. Although these portfolios have no stocks in 

common, the average pair-wise correlation of their idiosyncratic returns is 56%. This 

suggests that a systematic variable drives the common time-series variation of highly 

volatile firms. I examine if this variable is related to time-variation in market-wide 

measures of skewness.  

The two measures of skewness examined in this paper are cross-sectional 

skewness (CS-SKW) and the difference between the mean and median (Breadth) for all 

stocks greater than the NYSE 10% size breakpoint. The cross-sectional skewness 

measures capture whether the likelihood of randomly drawing a stock with exceptionally 

high returns is asymmetrically high in a given month. In essence, this is a measure of how 

likely an investor would be to randomly pick the ‘next Microsoft’ in a given month. An 

advantage of using cross-sectional measures over time-series ones is that they avoid the 

trade-off between time-variation and accuracy that is inherent in measuring a third-

moment of the return generating process. These cross-sectional measures can also be 

interpreted as measures of average idiosyncratic skewness. 

The cross-sectional skewness measures are persistent, thus allowing time-series 

predictability. More importantly, these measures seem to reflect a fundamental property 

of each point in time, as they are also highly correlated across mutually exclusive sets of 

stocks defined based on size. This persistence and common variation provide the 

opportunity to disentangle the effect of volatility from skewness. First, I construct a 

factor mimicking portfolio (IVOL) that captures the premium associated with exposure to 

idiosyncratic volatility. IVOL is defined as the difference in value-weighted returns 

between stocks with low volatility (long) and stocks with high volatility (short) after a 
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control for size.4 Not surprisingly, IVOL has a significantly positive time-series alpha in 

Fama-French three-factor regressions.  I show that IVOL co-varies strongly with 

measures of skewness, even when these measures are defined over all stocks excluding 

those used in constructing the IVOL factor. Second, I show that highly volatile stocks 

only underperform with respect to the Fama-French three-factor model when predicted 

CS-SKW is high. This suggests that high predicted cross-sectional skewness causes 

highly volatile stocks to have greater valuations and hence lower subsequent returns. 

Finally, I show that if one controls for cross-section skewness by using a factor-

mimicking portfolio, the alpha associated with IVOL disappears. These three tests 

provide strong evidence that the low returns to highly volatile stocks are the result of a 

premium for skewness. 

If cross-sectional skewness is an important determinant of expected returns, its 

effects should also be visible in other contexts as well. To see if this is true, I examine the 

underperformance of Initial Public Offerings (IPOs), documented by prior literature 

(Ritter, 1991). IPOs provide an ideal setting to examine the effect of skewness for two 

reasons. Prior literature reports that IPO returns are positively skewed (e.g. Brav, 2000). 

This could be because most IPOs are young firms, with a high fraction of their value in 

the form of growth options. Also, IPOs provide an opportunity to conduct event time tests 

which provide different insights from the calendar time tests conducted for idiosyncratic 

volatility. Specifically, event time tests provide a reference point (the listing month) to 

measure skewness, and to relate it to subsequent low returns.  Event-time tests show that 

the subsequent underperformance of IPOs is highly negatively correlated with measures 

of cross-sectional skewness at the time of their listing. IPOs only underperform on 

average if they list during times of high cross-sectional skewness. Also, in calendar time 

regressions, the returns of IPOs are correlated with the cross-sectional skewness 

mimicking factor and IVOL. Both these factors add explanatory power to the Fama-

French three-factor model for IPOs.  

                                                 
4 Specifically, stocks are first sorted into quintiles based on size. Within each quintile, stocks are sorted into 
quintiles based on their AHXZ measure of idiosyncratic volatility. Portfolio 0 is a value-weighted portfolio 
of all stocks in the least volatile quintile, across all size quintiles and so on for portfolios 1 to 4. IVOL is the 
difference in returns between portfolio 0 and 4 (VOL = RET0 -RET4). 
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 I find that cross-sectional skewness is also related to the abnormally low returns 

of small growth stocks, reported by Fama and French (1993). This is also consistent with 

the results on IPO underperformance, as Brav, Geczy, and Gompers (2000) find that IPO 

underperformance is concentrated primarily in small growth stocks. I find that stocks 

with high volatility load like small growth stocks even after explicit controls for size and 

book-to-market. Conversely, covariances with cross-sectional skewness among the 25 

size and book-to-market portfolios increase monotonically as size and book-to-market 

decrease. That is, small growth stocks have the highest correlation with cross-sectional 

skewness (-76%) among all the 25 size and book-to-market portfolios. 

The hypothesis that cross-sectional skewness is a systematic factor, in the 

Arbitrage Pricing Theory (Ross, 1976) sense, is supported by the success of its factor-

mimicking portfolio in explaining the cross-section of returns. The common time-series 

variation in measures of cross-sectional skewness suggests there may be an underlying 

economic variable driving skewness across different sets of stocks. Also, industries that 

have experienced significant shocks are over-represented in the portfolio with highest 

sensitivities to cross-sectional skewness. A hypothesis that explains this is related to the 

creative destruction process. Consider a large economy-wide shock, such as a new 

technology, which has the possibility of disrupting existing industry structures. Investors 

realize that there will be some firms, or sets of firms, that will benefit greatly once the 

new structure is realized. Although they do not know which firms in particular will win 

out, they realize that the cross-sectional distribution of returns is likely to be skewed. 

Firms with high sensitivities to this underlying source of uncertainty are also likely to be 

over-represented in portfolios of highly volatile stocks.  

To test if this sequence of events is supported by data, I examine whether proxies 

of technological change, like growth rates in patents or R&D investment, can forecast 

innovations in cross-sectional skewness. I find evidence consistent with this – both 

lagged growth rates of the number of patent grants and average R&D expenses (scaled by 

total assets) of publicly traded firms significantly predict future innovations in annual 

skewness.  

The low returns of stocks that vary with cross-sectional skewness are distinct 

from co-skewness, the traditional measure of the skewness that a stock adds to the market 

- 4 -



  

portfolio. In particular the factor mimicking portfolios for cross-sectional skewness and 

co-skewness are negatively correlated. This suggests that although the common variation 

in returns of highly volatile stocks may be due to a systematic factor, like technological 

change, a possible explanation for their low returns is a preference for idiosyncratic 

skewness as in Barberis and Huang (2005).  

There has been some recent controversy about the direction of the impact of 

volatility on returns. Surprisingly Fu (2005) and Spiegel and Wang (2005, henceforth 

SW) find exactly the opposite effect from AHXZ - stocks with high expected 

idiosyncratic risk earn high returns.  The difference between these papers and AHXZ is 

the method used to compute idiosyncratic volatility. I use a bias corrected estimator, 

based on a simplified version of the MIDAS estimator in Ghysels, Santa-Clara, and 

Valkanov  (2004).5  This estimator provides the ability to mix frequencies to generate 

monthly conditional variance forecasts using daily returns.6  This model strongly 

confirms AHXZ’s results: firms predicted to be in the highest quintile based on past 

volatility have abnormally low returns in the following month.   

The remainder of the paper is organized as follows. The next section reviews 

related research. Section 3 provides a brief description of the data used.  Section 4 

examines the common variation in stocks with high idiosyncratic risk. Section 5 

introduces measures of skewness and shows that they are able to explain the common 

variation in the returns of highly volatile stocks. Section 6 shows that skewness is also 

related to IPO underperformance and the small growth portfolio.  Section 7 provides a 

possible interpretation of these results.  Finally, Section 8 concludes 

2 Literature Review 
This paper is related to several strands of the literature, including papers that 

examine idiosyncratic risk, time-series and cross-sectional skewness, co-skewness and 

the effect of technological innovations on asset prices. This section briefly discusses 

relevant papers from each of these strands. 
                                                 

5 This estimator, called MIDAS with step functions, is described in Ghysels, Sinko, and Valkanov (2006) 
6 In a sample of 150 randomly chosen stocks, the MIDAS with step function estimate has lower 
mean/median, squared/absolute prediction error and greater rank correlation with realized volatility than 
monthly return based EGARCH / GARCH models used by Fu / SW, both for in-sample and out of sample 
predictions. 
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There has been a recent renewal in academic interest in examining the effect of 

idiosyncratic risk on returns. Goyal and Santa-Clara (2003) find that equal-weighted 

idiosyncratic volatility predicts future market returns. Subsequent research by Bali, 

Cakici, Yan, and Zhang (2005) finds that this relationship is weaker in an extended 

sample. Measuring idiosyncratic volatility as the standard deviation of the residuals of a 

daily three-factor regression over the prior month, AHXZ find that the next month’s 

returns of highly volatile stocks are abnormally low. In a follow-up paper (Ang, Hodrick, 

Xing, and Zhang, 2006b), they show that this pattern is visible internationally. 

Specifically they find that this effect is significant in each G7 country and is also visible 

across 23 developed countries. This provides out-of-sample evidence for their initial 

paper.7 They also document an intriguing co-variation between portfolios sorted on 

idiosyncratic risk in the US and in international markets. Specifically, after controlling 

for US idiosyncratic risk portfolio returns, the abnormally low returns in international 

markets are not significant. 

Fu (2005) uses a different approach to measure idiosyncratic volatility. He uses 

in-sample, conditional volatility from a Fama-French three-factor in mean, EGARCH in 

variance model on monthly returns as a proxy for idiosyncratic volatility. He finds that 

idiosyncratic volatility significantly predicts greater returns in Fama-Macbeth regressions 

on individual stocks. However, he also reports that value-weighted portfolios formed on 

sorts of idiosyncratic volatility do not have significant alphas. 

Spiegel and Wang (2006) extend Fu’s method to make out-of-sample predictions. 

That is, they re-estimate the model every month for every stock with more than five years 

of returns, using only prior information to predict volatility, and then roll it forward 

month-by-month to generate a time-series of predicted idiosyncratic volatility.  They 

show that high idiosyncratic volatility predicts high subsequent returns, and these high 

returns are robust to controls for liquidity. 

                                                 
7 Between the two papers, AHXZ rule out a host of probable explanations in the US market, including size, 
book-to-market, momentum, leverage, liquidity (the Pastor and Stambaugh (2003) measure), volume, 
turnover, bid-ask spread, co-skewness, dispersion in analyst forecasts, information asymmetry (via the PIN 
measure), percentage of zero returns, analyst coverage, institutional ownership, delay, and  individual stock 
skewness 
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There are four broad theoretical arguments that imply investors may be (or appear 

to be) compensated for idiosyncratic risk. Merton (1987) describes a model where 

investors are not well-diversified because they do not have information about all stocks. 

This leads to higher expected returns for high idiosyncratic volatility stocks. This is the 

explanation that Fu and Speigel and Wang provide for their results. Second, Miller 

(1977) suggests that differences of opinion, in the presence of short-sale constraints, 

cause optimistic views to be reflected in prices to a greater extent than negative views. If 

high idiosyncratic risk stocks are also short sale constrained, then a subsequent correction 

results in what appears to be a negative relation between idiosyncratic risk and returns.8 

A recent paper by Duan, Hu, and MacLean (2006) finds evidence in favor of a short sale 

constraints as a limit to arbitrage story. 

An earlier Merton paper provides a different framework to think about this issue. 

Merton (1974) uses a model of equity as a call option on the assets of the firm to value 

risky debt. An increase in asset volatility results in a greater value of the option. Johnson 

(2004) modifies this model to show that higher parameter uncertainty will also behave in 

a similar manner to higher volatility, serving to raise current prices and lower expected 

returns. 9  This model helps explain the low returns to stocks with high analyst dispersion. 

Finally, there is the ever-present ‘bad model’ problem. Idiosyncratic risk is defined based 

on a specific asset pricing model – an incorrectly specified model will result in what 

appears to be a compensation for idiosyncratic risk, but is actually just compensation for 

a missing factor. 10  

The results in this paper suggest that the missing factor is related to skewness. 

Higher moment versions of the CAPM suggest that time-series co-skewness with the 

market is a risk factor. These rely on a Taylor series expansion of utility functions or 

parameterizing the stochastic discount factor as a linear combination of higher moments 

of aggregate wealth. Harvey and Siddique (2000) construct a conditional skewness factor 

                                                 
8 However, Diamond and Verrecchia (1987) show in a rational expectations model, differences in opinion 
will not lead to biased prices even in the presence of short-sale constraints. 
9 In fact, the Johnson model results in an identical solution to Merton (1973) except that volatility is now  
the sum of underlying asset volatility and parameter uncertainty. 
10 Lehmann (1990) has an interesting perspective on the ‘bad model’ problem and idiosyncratic risk: There 
is now significant evidence that we live in a multi-factor world, therefore idiosyncratic risk defined by the 
CAPM should be related to expected returns.  
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and show that it is priced, while Dittmar (2002) also considers co-kurtosis. Kumar (2005) 

examines the idiosyncratic and systematic (time-series) skewness preferences of 

institutions and finds that institutions are averse to idiosyncratic skewness, but like 

systematic skewness. Kumar (2005) also investigates whether institutional preferences 

affect expected returns. A recent paper by Barberis and Huang (2005) shows that 

equilibria exist in which investors with prospect theory based utility functions prefer 

idiosyncratic skewness.  

Zhang (2005) finds that the cross-sectional skewness of similar firms (as defined 

by industry, size or book-to-market) predicts future total skewness of individual stocks. 

His results also support Barberis and Huang (2005) by showing that greater idiosyncratic 

skewness leads to lower subsequent returns. Unfortunately, he is unable to replicate 

AHXZ’s results and so cannot test if they are driven by skewness. Higson, Holly, and 

Kattuman (2002) examine the cross-sectional skewness of growth rates of firms and its 

relation to the business cycle. They find that cross-sectional skewness and variances are 

strongly counter-cyclical and that the effects of macro-economic shocks are more 

pronounced for firms in the middle range of growth.  

This paper is also related to the literature on technological change, industry 

structure, and asset prices, since skewness in returns may be an outcome of rapid 

technological change.  Jovanovic and Macdonald (1994) describe a model in which a rise 

in innovation precipitates an industry shake-out. This model illustrates the typical life-

cycle of an industry documented by Gort and Klepper (1982). A young industry is 

initially populated by a few small firms; the number of firms increases dramatically, 

raising output and lowering price, followed by a shakeout that results in many exits and 

few survivors.  The shake-out is typically preceded by a technological innovation. Pastor 

and Veronesi (2005) derive a general equilibrium model to explain the bubble-like 

patterns that asset prices exhibit during technological revolutions. The model examines 

the effects of learning about the productivity of a new technology. Subsequent adoption 

of the technology leads to changes in the nature of uncertainty from idiosyncratic to 

systematic, resulting in falling stock prices after an initial run-up. 
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3 Data  
I collect all available data from the Center for Research in Security Prices for U.S. 

listed stocks (with share code 10 or 11) from 1963-2005. Idiosyncratic volatility is 

computed (as in AHXZ) as the variance of residuals from a three-factor model from daily 

returns within a month. In particular, the residuals from the following regression on daily 

returns for each firm, each month, give idiosyncratic volatility: 

 

Rit – rf = αi + βi*(Rmt – rf) +  γi*SMBt +  φi*HMLt +  uit        (1) 

 

Where  t=1,2,…, T (the number of trading days in the month), Rm is the value-

weighted return on the market, and HML and SMB are defined as in Fama and French 

(1993) and are from Kenneth French’s website.  

Idiosyncratic volatility for each firm, each month is the variance of uit. Firm-months 

with less than 15 days of returns are excluded.  For annual estimates of idiosyncratic risk, 

a similar procedure is adopted using daily returns within the year. In addition, I include 

two lags of each factor to correct for stale prices. Following the literature, I refer to a 

regression with the market return, SMB and HML as a three-factor regression, and when 

it is augmented by the momentum portfolio (UMD) as a four-factor regression. Also, all 

t- statistics in the time-series regressions in the paper are based on Newey-West standard 

errors (with 3 lags). 

4 The common variation of stocks with high idiosyncratic volatility 
This section presents a series of stylized facts that help understand the AHXZ 

puzzle. First, Appendix 1 examines alternate measures of expected volatility and shows 

that the AHXZ result is robust. In particular, using monthly realized volatility from daily 

returns (as AHXZ do) provides better forecasts of next months’ volatility, as compared to 

monthly return based EGARCH estimators. Also, an alternative estimator based on 

MIDAS with step functions (Ghysels, Sinko, and Valkanov, 2006) that predicts future 

realized volatility by weighting the last five days, the last  month, and the last three 

months’ volatility also provides the same inference as AHXZ. These results show that 
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high conditional idiosyncratic volatility results in low expected returns, consistent with 

AHXZ. 

I then examine returns to portfolios created based on sorts on size and 

idiosyncratic volatility. This shows that there is substantial covariation between distinct 

size sorted portfolios with high idiosyncratic risk. This covariation suggests that there is 

an underlying factor associated with the returns of highly volatile stocks. Consequently, I 

define a factor, in section 4.2, that captures this co-variance and study its time-series 

properties. 

4.1 Size and idiosyncratic volatility 

Table 1 presents the results of three-factor regressions of the returns of value-

weighted portfolios formed from sequential sorts, first on size and then on idiosyncratic 

risk (as defined by AHXZ).  Except for the smallest stocks, all high idiosyncratic risk 

portfolios have significantly negative alphas. Panel B contains robustness checks, based 

on different size breakpoints (all stocks / NYSE only), equal or value-weighted 

portfolios, and adding a momentum factor to the three-factor regression. These 

robustness checks indicate that the AHXZ effect is strongest in mid-cap stocks. The 

smallest and largest stocks do not show as strong an effect. 

To examine whether the low returns to stocks with high idiosyncratic volatility 

are truly idiosyncratic, I create hedged returns by calculating the difference between the 

returns of the most and least volatile stocks within each size quintile. This results in five 

portfolios, with no stocks in common, that track the excess returns of stocks with high 

idiosyncratic risk over time. There is substantial time-series correlation between these 

portfolios. Clearly, this correlation may be because of common exposure to systematic 

factors. I therefore regress each of these portfolios on four-factors (the market, HML, 

SMB, and momentum) and measure the correlation of the residuals over time. Panel C 

presents these correlations, which are consistently high (between 26% and 76%). All 

pair-wise correlations are significantly different from zero at the 1% level. This suggests 

that stocks with high idiosyncratic volatility are exposed to a common underlying 

variable that is distinct from the traditional factors. 
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4.2 An idiosyncratic volatility based factor 

To understand whether highly volatile stocks give high returns in ‘bad’ times, 

when investors assign greater value to these returns, I create a representative portfolio for 

the returns to stocks with high idiosyncratic risk. As in Table 1, stocks are first sorted by 

size and then by idiosyncratic risk. Then value-weighted returns for stocks with the 

smallest idiosyncratic risk (Port 0) across size quintiles are computed to yield the size 

controlled idiosyncratic risk portfolio ‘0’. This is repeated for idiosyncratic risk quintiles 

1 to 4, generating five portfolios with similar size and increasing idiosyncratic risk. Panel 

A in Table 2 presents summary statistics for each of these portfolios.  

It is clear that the portfolio with the largest volatility has the lowest returns. The 

size control is effective, since all five portfolios have the same average size quintile. 

Idiosyncratic risk is also correlated with systematic risk, since market betas increase 

monotonically across volatility portfolios. This makes the low returns to highly volatility 

stocks anomalous, since according to the CAPM they should have higher expected 

returns. Another interesting finding is the loadings on SMB. Although stocks in all these 

portfolios have the same size, SMB loadings increase monotonically from the least to 

most volatile stocks. This makes the low returns of extremely volatile stocks even more 

anomalous. Since they co-vary with small stocks, their expected returns should be higher, 

and not lower than average. Increased exposure to growth serves to explain some of the 

low returns, but it does not go far enough, as four-factor alphas are still significantly 

negative. Highly volatile stocks thus behave like small growth stocks, even if they are not 

particularly small. When seen in this light, low returns to highly volatile stocks are not 

that surprising, since the inability of the Fama-French three-factor model to explain 

returns of the small growth portfolio is well known (Fama and French, 1993). This is 

explored in greater detail in section 6.3. 

To create a single factor that captures the premium and the common time-series 

variation of highly volatile stocks, I define the size-controlled idiosyncratic risk factor 

(IVOL) as Portfolio 0 – Portfolio 4. This portfolio is constructed in order to have positive 

expected returns. However, this means that returns to highly volatile stocks, that are our 

object of study, are negatively correlated to this portfolio’s returns. Table 2, Panel B lists 

the results of time-series regressions of this portfolio. The first column shows that it has a 
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negative CAPM beta and a positive CAPM alpha, which remains after controlling for the 

Fama-French factors and momentum11. This portfolio has (insignificantly) high payoffs 

during recessions and is not significantly correlated with the term spread or credit spread 

(not reported). This, along with the evidence in AHXZ suggests that it is unlikely that 

conventional measures of risk can explain the low returns to highly volatile stocks. The 

next section examines if measures of skewness are more successful at explaining the low 

returns of highly volatile stocks. 

5 Skewness and the returns of highly volatile stocks 
The common variation in the returns of highly volatile stocks provides a way to 

examine if skewness is related to the AHXZ puzzle. This is especially useful, since 

measuring skewness accurately for individual stocks is difficult. There is a sharp trade-

off between using a large history of returns to measure skewness accurately and a smaller 

history to capture the time-variation in skewness. However, aggregate measures that use 

the cross-section of returns at a given point in time provide a solution to this problem, 

since they are both timely and use a large sample. These cross-sectional skewness 

measures are also intuitive, as they represent the probability of drawing a stock with 

exceptionally high returns at a given point in time. Also, Zhang (2005) shows that the 

skewness of individual stocks is predicted better by cross-sectional measures of skewness 

for similar stocks than by using the stock’s own history. 

If skewness is responsible for the low returns to highly volatile stocks, then the 

returns of highly volatile stocks should be correlated with the variation in aggregate 

measures of skewness. Also, measures of skewness should exhibit systematic variation, 

in that they should be correlated over mutually exclusive sets of stocks at the same point 

in time. If the skewness of small stocks, for example, exhibited different time-series 

behavior from the skewness of large stocks, then skewness will not be able to explain the 

common variation in the returns of highly volatile small and large stocks. The first sub-

section introduces different measures of skewness and shows that this is indeed the case. 

Different measures of skewness are highly correlated with each other, even when defined 

                                                 
11 In unreported results, I find that the alpha is also robust to controlling for the Pastor and Stambaugh 
(2003) liquidity measure 
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over mutually exclusive sets of stocks. The next sub-section examines if measures of 

skewness are related to IVOL, the factor that captures the common variation in the 

returns of highly volatile stocks. Finally, the third sub-section creates a factor-mimicking 

portfolio for cross-sectional skewness and shows that it helps to explain the premium 

associated with IVOL in time-series regressions. 

5.1 Different measures of skewness 

Skewness for month m is measured using three metrics. The first, cross-sectional 

skewness across monthly returns of all stocks is defined as: 

 CS-SKW    = 
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where Nm is the number of stocks, and  r   is the mean monthly return across all stocks in 

month m.  This is my primary measure of skewness for this paper. A second measure of 

skewness is Breadth, which is the difference between the equal-weighted mean and 

median monthly return across all stocks. 

Breadth  =  Mean – Median  (3) 

This is an alternative measure of cross-sectional skewness that is perhaps less influenced 

by outliers, since it does not involve cubed terms. It is closely related to the Pearson 

measure of skewness, which is the difference between the mean and median scaled by 

standard deviation. For monthly returns, the normalization does not seem to affect the 

time-series much, as the correlation between breadth and the normalized series is 88.7 % 

(97.7% rank correlation). This measure is used to show that the primary results are robust 

to an alternative way of calculating skewness. 

A third measure is the average time-series skewness of individual stocks 
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where  Nm is the number of stocks, and ri,t  is the daily return for stock i on day t in month 

m. For all measures of skewness, stocks that are smaller than the NYSE 10% size 

breakpoint are excluded for two reasons. First, the returns of small firms are likely to 

contain some large values resulting only from microstructure effects such as bid-ask 

bounce. These may introduce noise into the measure. Second, their skewness is trending 

up over time, leading to a non-stationary series.12 Fama and French (2004) show that 

newly listed stocks have become more left-skewed in their profitability and right-skewed 

in their growth over the last three decades. It is not surprising that this change in 

fundamentals is also reflected in returns of the smallest stocks. This may also be because 

of increasing financial market development, which Brown and Kapadia (2006) show is 

related to the increase in idiosyncratic volatility observed in US equity markets over the 

last four decades. However, since this paper is concerned with explaining the returns to 

highly volatile stocks, the time-trend in the cross-sectional skewness of new firms is not 

explored further. 

Panel A of Table 3 provides summary statistics for these three measures of 

skewness. It is interesting to note that all three series have significant autocorrelation, so 

past measures can be used to predict the future. Also CS-SKW is the most persistent, 

with significant auto-correlations up to order 9, while auto-correlations for the other two 

series die out by order 2. The pair-wise correlations between these three measures are 

presented in Panel B. The high correlations suggest that these three measures are 

capturing similar phenomena. Appendix 2 studies the relationship between average time-

series and cross-sectional moments in greater detail, showing that their correlation is not 

unexpected. 

To investigate whether measures of cross-sectional skewness exhibit systematic 

variation over time, I define three sets of stocks – the largest 40% (Large), the next 30% 

(Medium), and the next 20% of stocks (Small) by NYSE size breakpoints. This 

categorization creates fairly equal assignment of stocks. Large increases from 484 to 741 

                                                 
12 Using Ln (continuously compounded) returns instead of normal returns changes some of the properties of 
the CS-SKW series. In particular, there is a significantly negative time trend over the sample and CS-SKW 
is negative on average. However the time-series variation around the trend is highly correlated with that of 
CS-SKW measured from normal returns.  Also, despite the time trend, the measures with and without the 
smallest 10% of stocks are reasonably correlated. 
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stocks, Medium from 408 to 746, and Small from 378 to 1003 (almost doubling with the 

inclusion of NASDAQ stocks in 1973) over the sample period.  I refer to each of these 

nine series using a combination of the measure (TS-SKW, Breadth, and CS-SKW) and 

the suffix (1 for Small, 2 for Medium, and 3 for Large). 

Panel A of Figure 1 plots a smoothed version (12 month moving average) of CS-

SKW for these three sets of stocks. As is obvious from the graph, these series are highly 

correlated, despite having no stocks in common. Panel B of Figure 2 computes CS-SKW 

over all stocks excluding those in the extreme volatility quintiles (called ‘no absolutely 

volatile’) and excluding those in the extreme volatility quintiles within their NYSE size 

quintile (called ‘no relatively volatile’). The figure shows that CS-SKW of all stocks is 

also very similar to these two series. The only difference is during the 1997-2000 period 

where all stocks have a higher skew than the set excluding the most volatile stocks.  

 Panel C of Table 3 shows the correlation across each of these measures for each 

size category. The table shows two key points. First, (as also seen in Figure 1, Panel A), 

there is high correlation between the same measure of skewness across different size 

classes. This suggests that each measure is picking up something fundamental about each 

point in time that is correlated over different sets of stocks. Second, there is also high 

correlation between different measures across different size classes. In fact, there is an 

even stronger relation between the measures. For example, in a regression of TS-SKW1 

on TS-SKW2, CS-SKW3 provides additional explanatory power: 

TS-SKW1 = 0.03  +  1.03    TS-SKW1  +  0.01   CS-SKW3. 
            [4.87]       [40.34]                             [3.55]  

 
These variables are chosen to make this as difficult to possible, since TSSKW1 and 

TSSKW2 have the highest pair-wise correlation (91%).  

5.2 Cross-sectional skewness and the returns of highly volatile stocks 

This section examines the relation between measures of cross-sectional skewness 

and the returns of highly volatile stocks. Figure 2 shows the primary result of this paper, 

that the low returns to highly volatile stocks are strongly related to cross-sectional 

skewness.  This figure plots IVOL along with the cross-sectional skewness of all stocks 

excluding the stocks used to construct IVOL. These two series have been orthogonalized 

with respect to the market to remove common dependence on market returns, and are 
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smoothed using a 12 month moving average. There is strong negative correlation 

between these two series. This suggests that time-variation in skewness is related to the 

common time-series variation of highly volatile stocks. I have also tried other variants of 

this procedure, such as replacing cross-sectional skewness with breadth and calculating 

breadth only for stocks in the middle volatility quintile, with similar results. 

Table 4, Panel A tests this relation in a time-series regression with controls for 

other variables, including the cross-sectional variance and the four-factors. The first 

specification shows that IVOL is negatively correlated with contemporaneous variance, 

which means that highly volatile stocks have returns that are positively correlated with 

variance (since IVOL shorts highly volatile stocks). The next specification shows that 

this reverses once we control for breadth and now breadth is negatively correlated with 

IVOL. Specification 3 shows that these results remain if additional controls for SMB, 

HML and UMD are introduced. The remaining specifications show that replacing breadth 

with cross-sectional skewness provides the same inference. 

Panel B examines whether IVOL has high returns (and hence highly volatile 

stocks underperform) when average skewness is expected to be high. This reinforces the 

results in Panel A, by showing that higher predicted skewness serves to raise current 

valuations and hence predicts lower future returns. Also, since skewness is measured 

prior to the returns of highly volatile stocks, this shows that any concern about a 

mechanical contemporaneous relationship is unlikely to be true. As a pre-requisite for 

this I need to be able to predict realizations of SKW. I consider the class of ARMA 

models, allowing for asymmetric coefficients on the AR terms and choose the one with 

the optimal Akaike Information Criterion. The best fit model is an ARMA (1,2).  

The first specification regresses IVOL on the four-factors for those months for 

which forecasted SKW is greater than zero. The alpha is large and significant. The 

second specification repeats the regression, this time only for the months in which 

forecasted skew is less than zero. The alpha drops to almost half and is not significant. 

This suggests that highly volatile stocks underperform with respect to the four-factor 

model only when predicted skew is high. 
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5.3 A factor mimicking portfolio for SKW 

Figure 2 indicates that cross-sectional skewness is correlated with the returns of 

highly volatile stocks. However, it is not clear if this correlation is stable and predictable, 

or alternatively, if prior sensitivities to cross-sectional skewness predict low future 

returns for individual stocks. This section addresses this issue by constructing a factor 

mimicking portfolio for cross-sectional skewness and examining if it adds explanatory 

power to the Fama-French three-factor model. This differs from prior tests in that I now 

examine whether sensitivity to a factor, which is a return of a portfolio as opposed to a 

measure of skewness, can help explain the low returns of highly volatility. This factor 

mimicking portfolio can also be interpreted as a factor in the Arbitrage Pricing Theory 

sense, since it is created to exploit correlations between individual stocks through 

common dependence on cross-sectional skewness. 

To construct the factor mimicking portfolio, I regress each stock’s return over 

month t-36 to t-1 on the market and innovations in cross-sectional skewness of all stocks 

(excluding the smallest 10% based on NYSE breakpoints) from an ARMA (1, 1) model. 

Stocks are sorted into quintiles on the basis of their cross-sectional skewness betas. 

Value-weighted returns for month t are calculated for each quintile. The difference in the 

extreme quintile portfolio returns (‘0’ – ‘4’) is SKW-FMP, the factor mimicking portfolio 

for skewness.  The correlation between innovations in cross-sectional skewness and 

SKW-FMP is -56%, suggesting that the factor is a reasonably accurate projection of the 

cross-skewness on the space of returns.  

Panel A of Table 5 presents gross returns, CAPM alphas, three-factor and four-

factor alphas. There is a large difference in average returns between firms with high and 

low sensitivities to cross-sectional skewness. The difference is about 4.1% a year, which 

is between SMB (2.9%) and HML (5.2%) over the same period. The patterns in Table 5 

are very similar to those in Table 2, in that stocks with high sensitivities to cross sectional 

skewness behave like small growth stocks. The extreme portfolio has a negative three and 

four-factor alpha. The magnitude of the alpha is about 3.8% per year, which is 

economically as well as statistically significant. This shows that sorting by prior 

sensitivity to cross-sectional skewness creates dispersion in returns that cannot be 

explained by the four-factor model.  
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Panel B presents a robustness check on size. Firms are first sorted into size 

quintiles using NYSE only size breakpoints. Within each quintile, stocks are sorted by 

CS-SKW betas, resulting in 25 value-weighted portfolios. Panel C indicates that within 

each size quintile, stocks with the highest CS-SKW betas have lower returns. Also, three-

factor alphas are significant in four of the five NYSE based size quintiles. These three 

panels provide strong evidence that exposure to cross-sectional skewness results in low 

expected returns that cannot be explained by traditional factor pricing models.  

To see if this factor can explain returns to highly volatile stocks, I examine returns 

to the IVOL factor defined earlier. Panel D reports results of time-series regressions. On 

introducing the SKW-FMP portfolio, the CAPM alpha drops to 0.24%, less than half its 

original value.  On adding HML, SMB and UMD, the alpha is not significant at 0.2%. 

However, SKW-FMP is still highly significant. This suggests that SKW-FMP can explain 

a large fraction of the abnormal returns of highly volatile stocks portfolios. 

 Thus, this section shows that cross-sectional skewness explains both the common 

time-series variation of highly volatile stocks, and the premium associated with the 

returns to highly volatile stocks. The factor mimicking portfolio for cross-sectional 

skewness also has a significant premium associated with it and adds additional 

explanatory power to the Fama-French three-factor model. Cross-sectional skewness thus 

solves the AHXZ puzzle. 

6 Other applications 
If cross-sectional skewness is an important determinant of expected returns, its 

effects should be seen in other contexts as well. This section examines two known (and 

related) anomalies, the underperformance of IPOs and small growth stocks.  

6.1 IPO underperformance 

IPOs provide an interesting setting to investigate the relation between cross-

sectional skewness and expected returns for several reasons. First, prior literature (e.g. 

Brav, 2000) has reported that IPO returns are skewed.13  This may be because IPOs tend 

                                                 
13 Since this paper has Microsoft in its title, I checked the returns of investing $1 in Microsoft at IPO. $1 
invested in 1986, would yield $398 as on November 14, 2006, a simple average return of approximately 
1985% a year. Interestingly, Microsoft is also in the highest quintile of stocks sorted by sensitivity to CS-
SKW in its first year in the sample. 
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to be young firms, with a large fraction of their value in the form of growth options. 

Second, IPOs have been known to underperform in the long run (Ritter, 1991) consistent 

with the predicted direction for a skewness preference. Barberis and Huang (2005) also 

suggest that a skewness preference could cause the low returns to IPOs. Finally, studying 

IPOs provides the opportunity to perform both event-time and calendar-time tests, which 

provide different insights.14 For event-time tests, the month of the IPO provides a 

reference point to measure skewness over. That is, if a preference for skewness drives the 

low returns to IPOs, firms that list when skewness in the economy is high should 

underperform more severely than those that list when skewness is low. The first sub-

section reports results of this test. The second sub-section reports results of calendar time 

tests that examine whether the time-variation in returns of new lists is related to time-

variation in cross-sectional skewness and also whether idiosyncratic volatility is related 

to underperformance. 

I define an IPO as the first appearance of a firm’s PERMCO on CRSP with an 

initial price of greater than five dollars. This method ensures that I do not miss any firms 

that may not be captured by other data sources (Fama and French, 2004, compare this 

approach with other data sources). The data begin in 1973, after the inclusion of Nasdaq 

listed companies on CRSP.  

6.1.1 Event time tests 

In event time tests, my measure of IPO underperformance is Buy and Hold Return 

(BHR) over matched firms. Matching is done by size at listing. Specifically, 
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where ri is the return of the IPO firm, from listing at month t=1 to t=36 or delisting, 

whichever comes sooner, and rm is the return of the matched firm based on size.  

BHR are normalized to be in monthly percent terms. The results in this section are 

robust to calculating BHR over matched size and matched size and book- to-market 

reference portfolios as well. However, since Barber and Lyon (1997) show that the 

                                                 
14 See Brav, Geczy and Gompers (2000)  and Ritter and Welch (2002) for a comparison of the advantages 
and disadvantages of each approach. 
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control-firm approach is more robust than the matched portfolio approach, only results 

for the control firm approach are presented.  Table 6, Panel A provides summary 

statistics. The number of IPOs that meet the criteria in the 1973 to 2002 period is 10,489 

and the average BHR is -0.47% per month, which is significantly different from zero. 

Also, median size adjusted returns at -0.70% per month, are also significantly different 

from zero, and are a little less than the mean, suggesting skewness. 

I measure cross-sectional skewness over two sets of firms – those less than three 

years old and those greater than three years. Both sets are reasonably correlated with each 

other (rank correlation of 0.50). Also, both do not include the new lists, whose 

subsequent returns are our object of study. Figure 3 shows average monthly BHR for 

firms listed in a given month along with cross-sectional skewness of firms less than three 

years old. Both series are smoothed using a 12 month moving average. This figure 

provides visual confirmation of the hypothesis that the subsequent underperformance of 

firms is related to a preference for skewness. The two series are significantly negatively 

correlated ( -0.25% rank correlation for the unsmoothed series), suggesting that IPO 

underperformance is inversely related to skewness at listing. 

Further evidence is provided by simple tests of averages. Panel B of Table 6 

shows that when the cross-sectional skewness of young firms is high (above its sample 

median), mean and median BHRs are significantly less than zero. However, when cross-

sectional skewness is small (less than its sample median), mean BHRs are insignificantly 

positive. IPOs do not underperform on average if they list when cross-sectional skewness 

is low. Median BHRs are still negative, however they are substantially less (about one-

third) than when cross-sectional skewness is high. Panel B also shows that IPO 

underperformance is much more severe in the 1989-2002 sub-sample as compared to the 

1973-1988 sub-sample. However, for both sub-samples mean BHR are not significantly 

different from zero for firms that list when cross-sectional skewness is low. Panel C 

shows that these results are robust to alternate definitions of skewness. In particular, 

lagged values of cross-sectional skewness and breadth also provide similar results. Most 

interesting is that using cross-sectional skewness measured only over stocks that listed 

over three years ago provides similar inference. This reconfirms the correlation between 

measures of skewness over different sets of stocks. 

- 20 -



  

This section thus shows that the subsequent underperformance of new lists is 

strongly correlated with measures of skewness at the time of their listing. This suggests 

that the low returns to IPOs are also the result of a premium for skewness. 

6.1.2 Calendar time tests 

The results in Brav, Geczy and Gompers (2000) and Ritter and Welch (2002) show 

that IPO underperformance is much less severe in portfolio based calendar time tests.  

Brav, Geczy, and Gompers find that IPO underperformance is a manifestation of the 

underperformance of small growth firms that is not restricted to IPOs. All IPOs do not 

underperform, only small growth firms (which are over-represented in the IPO sample) 

do. This section investigates the relation between IPO underperformance, size, 

idiosyncratic volatility and cross-sectional skewness in a setting similar to Brav, Geczy 

and Gompers (2000). 

Table 7, Panel A provides summary statistics for portfolios sorted on size and age 

since listing. Young firms are firms for which less than three years have elapsed since 

listing, while old firms are all other firms. It is clear that new firms underperform, 

especially for the smaller size quintiles.  

Panel B simultaneously sorts all firms first by size and then by lagged idiosyncratic 

volatility, showing value-weighted returns of only new lists and time-series averages of 

the number of them in each portfolio. The table shows that returns for the most volatile 

new lists are substantially lower than for other stocks. Also, new lists seem over-

represented in the highly volatile stock portfolios, especially for the larger size 

quintiles.15 Panel C shows that only highly volatile new lists underperform with respect to 

the Fama-French factors.  The pattern of underperformance is similar to that of all firms, 

suggesting that IPO underperformance can also be seen as a manifestation of the AHXZ 

effect. Highly volatile new lists, especially those in the middle size quintiles severely 

underperform, with Fama-French  alphas as low as -1.95% per month for the second size 

quintile. Also, these results suggest that IPO underperformance is not restricted to small 

                                                 
15 These tests do not require firms to have CompuStat data. When this requirement is imposed, the average 
number of firms in the smallest size quintile range from 26 (smallest volatility quintile) to 45 (largest 
volatility quintile).  
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growth stocks, since highly volatile IPOs that are in the middle size quintiles also 

underperform.16 

The AHXZ effect is also present if we exclude new lists. This suggests that the 

causality goes from highly volatile stocks underperforming to new lists underperforming 

rather than vice-versa.17 Panel D reports gross returns of size sorted portfolios of old and 

new firms. Old firm returns are greater than new firm returns for all five size quintiles, of 

which the difference is significant for three. 

 The next tests are calendar time regressions of portfolios that are long old and 

short new firms, within each size quintile. All but the largest size portfolios have 

significant CAPM alphas. However, consistent with Brav, Geczy, and Gompers (2000), 

the Fama-French three-factor model provides substantial additional explanatory power. 

Only two of the five portfolios have positive Fama-French alphas. On adding the 

skewness mimicking factor (SKW-FMP), none of the portfolios have significant alphas, 

with the alphas of the three smallest size portfolios reducing by about one-third. Also, 

SKW-FMP is significant in all five regressions. These results suggest that the SKW-FMP 

helps explain the time-series variation on new lists. Also, on controlling for SKW-FMP 

none of the size sorted portfolios underperform.  The results of using the IVOL portfolio 

instead of SKW-FMP are similar. 

The evidence in this section shows that only highly volatile IPOs underperform in 

the long run, and this underperformance is correlated with the skewness factor 

constructed earlier. 

6.2 Cross-sectional skewness and the Fama-French factors 

Table 2 showed that despite controlling for size, highly volatile stocks load like 

small stocks. Table 8 investigates whether a similar phenomenon occurs for book-to-

market. Stocks are first sorted into quintiles by NYSE book-to-market breakpoints and 

                                                 
16 Using sorts on NYSE based size quintiles and then on idiosyncratic volatility, I find that a large majority 
of new firms are in the smallest size quintile. The alpha of the most volatile portfolio is significantly 
negative at -1.74% (225 firms on average) in the smallest quintile, -0.75% (also significant; 50 firms on 
average) in the second largest and insignificantly negative in the three biggest portfolios, which have large 
standard errors, since the average number of firms is 26, 16 and 6 respectively. 
17 This is shown in Panel B of Table A1, which shows that even if firms with at least three years history are 
used, the average returns of the extreme volatility quintile are still abnormally low. Volatility is predicted 
using a MIDAS with step functions estimator described in Appendix 2. Similar results are obtained if firms 
with at least 5 years of return history are used. 
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then sorted on volatility within the book-to-market quintiles. The table reports results of 

value-weighted returns of these portfolios in Fama-French regressions. First, Panel A 

shows that the underperformance of highly volatile stocks is the largest among stocks 

with low book-to-market ratios (growth stocks). The alpha of the highest volatility 

portfolio decreases from -1.5% per month for the lowest book-to-market quintile to  

-0.73% per month, for the highest book-to-market portfolio. Panel B shows that in 

general, the loading on HML decreases with volatility, within a book-to-market quintile.  

Highly volatile stocks load like growth stocks even after controlling for book-to-market. 

This suggests that differences in volatility create dispersion among the covariances of 

stock returns (with the factors) after controlling for the characteristic (size or book-to- 

market). Unfortunately, the covariance with SMB makes the low returns of highly 

volatile stocks more difficult to explain, while the covariance with HML makes it easier. 

Since, highly volatile stocks are correlated with SMB after controlling for size 

and with HML after controlling for growth, I examine if the underperformance of the 

small growth portfolio is correlated with the underperformance of highly volatile stocks 

and with cross-sectional skewness. S1B1 (the smallest size and book-to-market portfolio) 

is highly correlated with IVOL (-80%) and with SKW-FMP (-75%).  Panel C shows that 

these correlations persist in a regression of the 25 size and book-to-market portfolios on 

CS-SKW after controlling for market returns. The results for using IVOL instead of CS-

SKW are very similar and hence not reported. In general, the returns of small growth 

stocks are most correlated with both these variables. Panel D shows that the alpha of the 

small growth portfolio becomes insignificant after controlling for market returns and 

IVOL. However, on introducing SMB and HML, the alpha is significant again, though 

about 20% smaller than without the IVOL control.  It is the relation between SMB and 

volatile / small growth stocks that makes the underperformance reappear.  

This section thus provides evidence that the small growth portfolio shares 

substantial common time-series variation with the SKW-FMP portfolio. This suggests 

that the anomalously low returns of this portfolio are also related to a premium for 

skewness. There is mixed evidence for this hypothesis. In regressions of this portfolio on 

the market and SKW-FMP, there is no alpha. However, on including  SMB and HML, 

the alpha reappears. 
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7 Interpreting Cross Sectional Skewness 
This section analyzes the determinants of the time-variation and the premium 

associated with cross-sectional skewness. To gain a more intuitive understanding of the 

nature and type of firms that are exposed to cross-sectional skewness, section 7.1 

examines which industries make up a significant fraction of the highest cross-sectional 

skewness portfolio. The industries that are over-represented in this portfolio appear to be 

those that have experienced significant change. Consequently, Section 7.2 explores 

whether the cross-sectional skewness innovations can be predicted with proxies for 

technological change, suggesting a technology shock based explanation for the time 

variation in cross-sectional skewness. This potentially explains the common variation of 

stocks with high skewness. Section 7.3 examines whether co-skewness with the market is 

responsible for the low returns to stocks with high exposures to cross-sectional skewness. 

7.1 Industry effects 

Table 9, Panel A examines the industry composition of the highest cross-sectional 

skewness portfolio, based on the Fama and French (1997) 48 industry classification 

scheme. The panel reports the top three industries in each decade from 1965-2005 in this 

portfolio, by market capitalization. The next row reports the fraction of the portfolios’ 

market capitalization that each industry represents. However, it is possible that an 

industry is a high fraction of this portfolio because it has a large share of the overall 

market. Therefore, the third row presents the ratio of each industry’s share of the highest 

skewness portfolio, to its share of the overall market. Ex-ante, there is no reason to expect 

that sorting on the coefficient of a firm’s return on cross-sectional skewness will result in 

portfolios that are different from the market portfolio in terms of composition. This table 

shows that considerable differences exist. 

A common theme that emerges from this table is that industries which have 

experienced significant change are over-represented in this portfolio. For example, 

Business Services represents 21% of this portfolio in the 1995-2005 period, which is 2.5 

times its average contribution to the market as a whole. The Business Services industry 

contains software programming firms (like Microsoft) and internet firms (like Ebay). 

These segments experienced tremendous change during this period, and it is not 

surprising to see them over-represented in this portfolio. Also, during 1975 to1985, the 
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most highly represented industry is oil and natural gas. This is intuitive, given the large 

oil shocks in the late 1970s. Computer Hardware, from 1975 to 1995 (the IBM Personal 

Computer was launched in 1982), and Telecommunications, from 1995 to 2005, are also 

consistent with this. 

Although informal, this analysis suggests that firms in industries that have 

experienced large shocks are more likely to be in the portfolio that is most sensitive to 

cross-sectional skewness. Consequently, the next section examines if one such shock, 

significant technological change, can explain aggregate measures of cross-sectional 

skewness. 

7.2 Cross-sectional skewness and technological change 

An economy-wide shock like a new technology has the potential to disrupt 

existing industry structures. Gort and Klepper (1982) examine the life-cycle of 46 

industries and show that technological innovations are a key determinant of industry 

structure. Motivated by their work, Jovanovic and Macdonald (1994) examine the US 

automobile tire industry from 1906 to 1973. They suggest that a technological refinement 

in 1916 led to a non-monotone number of firms over time. A sharp increase in the 

number of firms at the start of the sample is followed by a shake-out, precipitated by an 

increase in optimal scale brought about by the technological innovation. These results 

suggest that although many firms typically enter industries in order to take advantage of a 

technological innovation, very few firms eventually succeed. 

Translating this intuition to financial markets, a possible hypothesis is that 

anticipation of the benefits of technological change leads to cross-sectional skewness. 

Firms that survive the technological shock-induced shake-out, and reap the benefits of the 

innovation, are likely to do exceptionally well. 18 This mechanism suggests that there 

should be a relation between technological innovations and cross-sectional skewness.  

To test this sequence of events, I examine if proxies for technological change can 

predict future cross-sectional skewness. The proxies I choose are patent grants and 

Research and Development (R&D) expenditure by publicly listed firms. Since these data 

are annual, I construct an annual cross-sectional skewness measure, as the skewness of 
                                                 

18 These effects are likely to be stronger in winner take all industries (like the PC operating system market) 
where there is competition to define the industry standard. 
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monthly returns of large firms over the next year. This series is not as persistent at the 

annual frequency as the monthly one, but I take innovations from an AR(1) model to 

remove the small auto-correlation (3%). Cross-sectional skewness and patent grant 

growth are strongly correlated (correlation of 37%) and this is confirmed in predictive 

regressions in Panel B of Table 9. The lagged growth in patent grants significantly 

predicts future cross-sectional skewness. The table also reports results of adding an 

additional control for lagged market returns, as a proxy for other variables like the state 

of the economy as a whole, which could impact both variables. Controlling for current 

market returns or an additional lag does not change the inference. The second proxy for 

technological change is lagged growth in average R&D expenditure scaled by Total 

Assets (R&D growth). Panel B shows that R&D growth also significantly predicts future 

skewness and survives the controls for lagged market returns. These results are robust to 

excluding the last 10 years of the sample, where the technology ‘bubble’ led to 

exceptional values for R&D expenditure. 

7.3 Low expected returns for stocks with high cross-sectional skewness 

There are two possible reasons for the low returns to stocks with high sensitivity 

to cross-sectional skewness. First, these stocks may add skewness to a well-diversified 

portfolio. The ability to add skewness to the market portfolio, called co-skewness has 

been shown to be associated with low expected returns (see Harvey and Siddique, 2000; 

henceforth HS). Second, these stocks may provide idiosyncratic skewness, which is 

consistent with Barberis and Huang (2005), who show that idiosyncratic skewness 

commands a premium in an economy where agents have prospect-theory based 

preferences. This section examines if cross-sectional skewness is related to co-skewness 

I compute a co-skewness factor in a manner similar to HS. Each firm’s returns are 

regressed on the market return and the squared market return for months t-36 to t-1. 

Firms are then sorted according to their regression coefficients on squared market returns. 

The difference in value-weighted returns between the top 30% (S+) and the bottom 30% 

(S-) is the COSKEW factor. HS report that the difference between S+ and S- is 3.6% for 

their sample. In my sample, it is very close, at 3.5%. Table 10, Panel A presents results of 

a regression of each of these portfolios on the market and the cross-skewness factor. 

Portfolio 0 (or S- in HS terminology) has the most negative coefficient on SKW-FMP. 
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That is, it co-varies most with stocks that have high returns when cross-sectional 

skewness is high. The coefficient on portfolio 3 (the S+ portfolio) is also negative, but 

smaller in magnitude. This suggests that both stocks with negative and positive co-

skewness have positive cross-sectional skewness, with stocks with negative co-skewness 

having the most positive cross-sectional skewness. This confirms that co-skewness and 

cross-skewness are capturing different phenomena. As a final check, Panel B shows that 

the alpha of SKW-FMP increases on adding co-skewness as an additional factor to a 

four-factor regression. Also after controlling for the effects of other factors, co-skewness 

and cross-sectional skewness are negatively correlated. 

This section shows that the low returns to stocks with high sensitivities to the 

cross-sectional skewness factor cannot be explained by greater co-skewness with the 

market. This suggests that idiosyncratic skewness, as modeled by Barberis and Huang 

(2005) may be responsible for the low expected returns of socks with exposure to high 

cross-sectional skewness. 

8 Conclusion 
This paper examines a recent puzzle in financial economics. The returns of highly 

volatile stocks are abnormally low and are correlated with each other. Additionally, 

results show that this puzzle is related to the underperformance of the small growth 

portfolio in the Fama-French three-factor model. Highly volatile stocks load like small 

growth stocks even after explicit controls for the size and book-to-market. The common 

link between these two empirical results is that both highly volatile stocks and small 

growth stocks give high returns in times when cross-sectional skewness is high.  This 

paper also shows that cross-sectional skewness is a fundamental measure of each time 

period, as it is correlated across mutually exclusive sets of stocks. Stocks with high prior 

sensitivities to cross-sectional skewness also have low expected returns. The alpha of the 

idiosyncratic risk portfolio disappears on controlling for skewness (by using a factor 

mimicking portfolio for cross-sectional skewness). Thus, cross-sectional skewness helps 

solve the AHXZ puzzle. 

Another application of cross-sectional skewness is IPO underperformance. Ritter 

and Welch (2002), in their review of the IPO literature, conclude their section on IPO 
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underperformance with “… we hope to see further work to tell us which sub samples are 

particularly prone to poor post-IPO performance…” This paper provides an answer. IPO 

underperformance is greatest when cross-sectional skewness of young firms is high. This 

provides supports for the hypothesis that the underperformance of IPOs is also caused by 

a skewness preference. 

  One possible explanation that ties these facts together is the relation between the 

stock market and large shocks in the economy, like technological change. Significant 

shocks can disrupt existing economic structures and create new winners, and thereby 

generate a cross-sectional skew in returns. Furthermore, stocks that are highly sensitive to 

such shocks are likely to both have more uncertain pay-offs and to move together over 

time. It is likely that such stocks are small growth stocks that are highly volatile, which 

are the stocks that I find co-vary strongly with cross-sectional skewness. This 

interpretation is further supported by the result that cross-sectional skewness innovations 

are predictable with proxies of technological change, like prior patent grant growth and 

R&D expenditure by publicly listed firms. The low returns to these stocks are not related 

to co-skewness, suggesting that they are caused by non-systematic skewness. 

To conclude, this paper offers five key contributions. It (i) resolves the 

controversy between Fu and AHXZ on the direction of the impact of individual stocks 

volatility on returns in AHXZ’s favor, and shows that (ii) highly volatile stocks move 

together, (iii) returns to portfolios with highly volatile stocks are correlated with cross-

sectional skewness of individual stock returns, (iv) cross-sectional skewness predicts 

subsequent IPO underperformance and is also related to the ‘small growth’ anomaly, and 

(v) cross-sectional skewness in turn is predictable using proxies of technological change.  
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Appendix 1: Forecasting individual stock volatility 

Recent papers, by Fu (2005) and Spiegel and Wang (SW; 2006) find that monthly 

return based EGARCH estimators of conditional volatility provide different inferences 

from lagged realized monthly volatility from daily returns, used by AHXZ. For 

EGARCH estimators, higher volatility predicts positive rather than negative returns. Fu 

and SW suggest that this is because these are better predictors of volatility than lagged 

realized monthly volatility. Together, these papers provide three broad arguments to 

support their case. Fu shows that realized monthly volatility is not a random walk and 

that realized volatility is contemporaneously positively correlated with returns. Also SW 

argue that daily returns are likely to be contaminated with microstructure noise for 

smaller stocks.  

Although these arguments are compelling, there are also significant advantages of 

using daily return based estimators. Lagged realized volatility is simple and model-free 

and does not have parameter estimation error. Second, Merton (1980) shows that 

increasing the frequency (in the absence of micro-structure effects) provides more 

accurate estimates of volatility. Also, the positive contemporaneous correlation of 

realized volatility with returns may be just a manifestation of the positive skewness of 

individual stocks (see Duffee, 1995). It is not clear if it can be predicted using past 

volatility. Finally, there are simple corrections for microstructure biases that have been 

shown to work reasonably well (e.g. Harris, 1990). Ultimately, the relative performance 

of monthly and daily return based estimators is an empirical question. This section 

compares the two estimators used in the literature along with other possible estimators.  

Unfortunately, it is difficult to use GARCH based conditional volatility models on 

daily returns to provide monthly estimates volatility. The Mixed Data Sampling 

(MIDAS) approach used by Ghysels, Santa-Clara and Valkanov (2004) solves this 

problem, by allowing the ability to mix different frequencies. Ghysels at al (2004) use 

this approach to uncover a robust risk-return tradeoff at the market level, where GARCH 

models on monthly returns are not that successful. This section uses a computationally 

less intensive version of MIDAS, called MIDAS with step functions (Ghysels, Sinko, 

Valkanov, 2006), to provide monthly forecasts of volatility using daily returns.  
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The MIDAS with Step Functions (MIDAS-SF) model is also similar to the 

Heterogeneous Arrival Rate (HAR) model in Corsi (2003). The key advantage of this 

model is that it can be estimated by OLS, making it suitable for estimating the volatility 

of individual stocks.  The model specification used is: 

σ2
(t,t+22) = α + β1 σ2

(t-5,t) + β2 σ2
(t-22,t) + β3 σ2

(t-66,t)  + εt  (A1) 

This model in essence predicts the next months’ volatility, using the last five 

days’ volatility, the last months’ volatility and the last three months’ volatility. All 

realized volatility measures use the French, Schwert and Stambaugh (1987) correction for 

microstructure effects, by adding twice the auto-covariance of returns. 19 Harris (1990) 

shows that this helps correct the biases induced by discrete prices and bid-ask bounce.  

Table A1 considers five different estimators for monthly realized volatility. These 

include MIDAS-SF, Lagged volatility, EGARCH (1,1), GARCH (1,1) and an 

ARMA(1,1) on monthly realized volatility (used by French, Schwert and Stambaugh, 

1987). This table reports in-sample tests to predict realized monthly volatility. Also, only 

stocks with at least three years of returns are used.  

It is clear from the table that lagged realized monthly volatility performs better 

across different measures than using EGARCH on monthly returns. This inference 

remains the same in out-of-sample tests, with or without the microstructure bias 

correction, excluding low priced stocks (where microstructure biases are likely to be 

more extreme), and also if idiosyncratic volatility rather than total volatility is 

predicted.20 

Also, both the MISDAS-SF and the ARMA (1,1)  that use the information in daily 

returns, work best in-sample (the difference between the two are not statistically 

significant). These results clearly show that using daily returns as in AHXZ provides 

better estimates of volatility than using monthly return based estimators 

Panel B examines whether AHXZ’s result are robust to using the MIDAS-SF 

estimator. Panel B estimates the following model that is a slightly modified version of 

MIDAS-SF that also includes the information in past realizations of market volatility: 

                                                 
19 Except for σ2

(t-5,t) , which is just the average squared return of the last five days of the prior month.  
20 These results are available from the author on request. 
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σ2
i(t,t+30) =  α + β σ2

i (t-5,t) + δ σ2
i (t-22,t) + γ σ2

i (t-66,t) +  

 β’ σ2
m (t-5,t) + δ’ σ2

m (t-22,t) + γ’ σ2
m (t-66,t) + εt   (A2) 

Where σ2
m (t, t+x) is the variance of daily market returns from t to t+x and, σ2

i (t,t+x) is 

idiosyncratic volatility from t to t+x. Idiosyncratic volatility is the variance of daily 

residuals computed from the Fama-French three-factor model. 

 Panel B clearly shows that this estimator, which also outperforms the EGARCH 

based estimators, provides the same inference as AHXZ. High predicted volatility is 

followed by low subsequent returns. 
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Appendix 2: Time-series and cross-sectional moments 
This appendix examines the relation between average time-series variance and 

skewness, and cross-sectional variance and skewness. In particular the time-series 

measures are computed using daily returns within the month and averaged across stocks, 

while cross-sectional measures are computed using monthly returns.  

It is easy to show that cross-sectional variance computed from monthly returns is 

an approximation for the average total variance of all stocks that month, computed from 

daily returns. The approximation depends on the extent of auto-covariance for individual 

stocks, which is typically small. 
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where Ri monthly (ln) return of stock i, ri = daily return of stock i, and t = 1, 2,.., T is the 

number of days within a month 

   (A4) 

 

 

 

The last two terms are negligibly small as compared to the first one, which is just T times 

the average variance of individual stock returns. Empirically, this approximation is 

reasonable, with cross-sectional variance and average idiosyncratic variance correlated 

(over 1960-2005) at 83%. This approximation has been used in the past, for example by 

Brav, Brandt and Graham (2005) and also Goyal and Santa-Clara (2003). 

Similarly, one can compute the skewness of each stock using daily returns within 

a month, and then calculate the average of this across all stocks that month. This 

represents the average total skewness of all stocks that month. The relation between 

cross-sectional skewness and average total skewness is significant, but not as strong as 

the relationship between the variances. It is also analytically more difficult to represent 

the approximation in economic terms. The relatively smaller correlation arises for two 

mechanical reasons (i) the functional form of skewness, since the sum of cubed returns 

are standardized by time-series variance for each stock and (ii) the greater relative 
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importance of other terms that arise in the cubic expansion, like the cross-correlation 

terms (squared returns with lagged and future returns for each stock).  On a more 

fundamental level, using only 22 daily returns within a month might bias the skewness 

calculated. Despite these effects, the contemporaneous correlation between average 

skewness and cross-sectional skewness is 35% (48% rank correlation).   
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Panel A: Cross sectional skew by NYSE size breakpoints

Panel B: Skew of Large stocks

Figure 1. Cross Sectional Skewness.

Panel A: Skew of Large/Medium/Small stocks
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This figure plots the cross-sectional skewness of different sets of stocks. Cross-sectional skewness is 
measured as the skew of monthly returns of all stocks within a defined set. In Panel A, the sets are 
defined on the basis of NYSE size quintiles - Small (10% to 30%),  Medium (30% to 60%) and Large 
(>60%). In Panel B, all stocks >median NYSE size are considered. The skew of all these stocks 
(Large), excluding all stocks in the top 20% and bottom 20% of last month's idiosyncratic volatiliy 
(no absolutely volatile) and excluding those in the top and bottom 20% of volatility within their size 
quintile (no relatively volatile) are plotted.
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Figure 2. Cross Sectional Skewness and IVOL.
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This figure plots lagged 12 month moving averages of cross-sectional skewness and returns of the 
IVOL factor. 
IVOL construction: Stocks are first sorted into quintiles based on size. Within each quintile, stocks 
are sorted into quintiles based on their AHXZ measure of idiosyncratic volatility. Portfolio 0 is a 
value-weighted portfolio of all stocks in the least volatile quintile, across all size quintiles and so 
on for portfolios 1 to 4. The IVOL factor is the difference in returns between portfolio 0 and 4 
(VOL = RET0 -RET4). 
Skew is the skewnesss of monthly returns of all Large stocks (in the top 40% based on NYSE size 
breakpoints) excluding stocks used to construct IVOL above. 
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Figure 3. Initial Public Offering (IPO) under-performance and cross-sectional skewness.
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This figure plots the skewness of all stocks less than three years old along with the (subsequent) 
underperformance of IPOs listed that month. An IPO's BHR is the excess Buy and Hold Return of 
the IPO over a  matched firm that is similar in size.  The  average BHR of all firms listed in a given 
month is that month's measure of average IPO under-performance. YCS-SKW is the cross-sectional 
skewness of all firms less than three years old that are larger than NYSE 10% size breakpoint, 
exluding those with IPOs that month. Twelve month moving averages of both these series are 
plotted.
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IVOL Low 0 1 2 3 High 4 IVOL 0 1 2 3 4
Low 0 0.26% 0.27% 0.22% 0.07% 0.08% Low 0 1.75 2.22 2.23 0.86 1.36

1 0.42% 0.29% 0.23% 0.19% 0.06% 1 2.55 2.58 2.66 2.46 1.17
2 0.42% 0.04% 0.01% 0.16% 0.01% 2 2.12 0.37 0.13 2.31 0.10
3 0.37% -0.51% -0.26% -0.08% 0.11% 3 1.62 -3.65 -3.00 -1.19 1.56

High 4 -0.23% -1.60% -1.37% -0.81% -0.23% High 4 -0.81 -7.36 -8.48 -6.16 -1.84

0 1 2 3 4
NYSE size breakpoints
EW 0 - - - 0
VW - - - - 0
EW + UMD 0 - - 0 0
VW + UMD - - - 0 0
All firm size breakpoints
EW + - - - -
VW 0 - - - -
EW + UMD + - - - -
VW + UMD 0 - - - -

Resid0 Resid1 Resid2 Resid3 Resid4

Resid0 100%

Resid1 76% 100%

Resid2 62% 80% 100%

Resid3 40% 59% 72% 100%

Resid4 26% 37% 48% 62% 100%

Table 1. Size and idiosyncratic volatility sorts.

Panel A: Three factor alphas

Panel C: Correlations

Panel B: Alternative portfolio formation methods and controls for momentum

Alpha t-statistics

Size Size 

Panel A contains Fama and French (1993) three-factor alphas of value-weighted portfolios formed based on size and 
idiosyncratic volatility. Idiosyncratic volatility is measured as in AHXZ, as the variance of residuals of a three-factor 
model for the prior month. All firms are first sorted by size and then on the AHXZ measure of idiosyncratic volatility. 
t- statistics reported for the alphas are based on Newey-West corrections to standard errors (three lags). Panel B 
reports which size portfolios have significantly (at the 10% level) negative (-), positive (+) or insignificant (0) alphas 
for their highest idiosyncratic volatility portfolio, based on alternative portfolio formation methods and regressors. The 
variations include value / equal weighting (VW / EW), forming size quintiles based on all firms / NYSE only firms, 
and adding an additional momentum factor (UMD). In Panel C,  size and idiosyncratic volatility sorted portfolios are 
created as in Panel A. For each size quintile, the difference between extreme (lowest minus highest) idiosyncratic 
volatility quintiles is computed, leading to 5 portfolios. These five portfolios are regressed on excess market returns, 
HML and SMB and UMD. Panel C reports correlations of the residuals (resid) from the regressions in Panel A. All 
correlations are significantly different from zero at the 1% level. 
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Portfolio 0 1 2 3 4

Gross Returns 0.97% 1.03% 1.01% 1.06% 0.65%
Avg size quintile 2.04 2.04 2.04 2.04 2.04

Alpha 0.05% 0.07% 0.03% 0.09% -0.32%
[0.9] [1.16] [0.61] [1.4] [-2.59]

Market 0.86 0.98 1.09 1.12 1.23
[60.74] [50.91] [65.07] [59.24] [31.94]

HML 0.18 0.12 0.01 -0.18 -0.45
[4.27] [2.37] [0.35] [-4.72] [-5.16]

SMB -0.23 -0.14 0.00 0.28 0.65
[-9.93] [-4.17] [0.11] [8.8] [8.72]

UMD 0.03 0.01 -0.02 -0.03 -0.06
[0.89] [0.24] [-0.75] [-1.28] [-1.05]

(1) (2) (3)

Alpha 0.67% 0.37%
 [3.41] [2.56]

Mkt -0.73 -0.37
[ -10.77] [ -8.21]

HML 0.75
[4.95]

SMB -0.87
[-13.71]

UMD 0.09
[ 1.54]

Recession dummy 0.013
[1.37]

Panel B: The IVOL factor

Table 2. The IVOL factor.

Panel A: Size controlled idiosyncratic volatility sorts

This table contains summary statistics for the IVOL factor. Stocks are first sorted into quintiles based 
on size. Within each quintile, stocks are sorted into quintiles based on their AHXZ measure of 
idiosyncratic volatility. Portfolio 0 is a value-weighted portfolio of all stocks in the least volatile 
quintile, across all size quintiles and similarly for portfolios 1 to 4. Panel A presents returns and 
loadings in four-factor regressions for each of these portfolios. Panel B presents statistics for the IVOL 
factor, defined as the difference in returns between portfolio 0 and 4 (VOL = RET0 -RET4).
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Variable Mean Std Dev Median Minimum Maximum ρ1 ρ2

CS-SKW 0.863 1.018 0.742 -1.070 10.325 0.247 0.164
Brdth 0.006 0.013 0.005 -0.047 0.110 0.219 0.033
TS-SKW 0.241 0.156 0.242 -0.518 0.652 0.207 0.022

CS-SKW Brdth TS-SKW
CS-SKW 1
Brdth 0.78 1
TS-SKW 0.48 0.65 1

TS-SKW1 TS-SKW2 TS-SKW3 CS-SKW1 CS-SKW2 CS-SKW3 Brdth1 Brdth2 Brdth3

TS-SKW1 100%
TS-SKW2 91% 100%
TS-SKW3 66% 79% 100%
CS-SKW1 49% 42% 29% 100%
CS-SKW2 42% 39% 24% 60% 100%
CS-SKW3 45% 42% 33% 55% 58% 100%
Brdth1 66% 61% 45% 71% 62% 61% 100%
Brdth2 63% 60% 43% 61% 72% 67% 86% 100%
Brdth3 52% 48% 37% 56% 61% 77% 72% 82% 100%

Panel A: Summary statistics

Panel B: Spearman correlations for different skewness measures

Panel C: Spearman correlations of different measures of skewness for small, medium and large stocks

Table 3. Different measures of skewness.
This table contains summary statistics and correlations between different measures of skewness. Panel A contains summary statistics, while Panel B 
reports Spearman (rank) correlation coefficients for CS-SKEW, Breadth and Average TS-SKEW. CS-SKEW is the cross-sectional skewness of 
monthly returns,  Breadth is equal-weighted Mean-Median of monthly returns, while TS-SKEW is the time-series average skewness of daily returns 
averaged across all stocks. All these measures are for stocks greater than the 10% NYSE size breakpoint. All correlations are significantly different 
from zero at p=0.01 levels. Panel C contains Spearman correlation coefficients between different measures (CSSKEW, TSSKEW and Breadth) for 
firms in different size quintiles (suffix 1, 2, 3 for small, medium and large firms respectively). 
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Panel A: IVOL, Variance and Breadth

(1) (2) (3) (4) (5)

Intercept 0.022 0.023 0.011 0.027 0.009
[5.47] [10.4] [4.41] [5.07] [3.2]

Mktrf -0.661 -0.375 -0.284 -0.586 -0.343
[-8.28] [-7] [-7.06] [-7.83] [-7.54

CS-VAR -0.536 0.526 0.324 -0.393 0.079
[-3.96] [3.63] [3.16] [-1.23] [0.41]

Breadth -2.426 -1.235
[-8.55] [-6.37]

CS-SKW -0.018 -0.007
[-4.16] [-3.4]

HML 0.511 0.596
[5.13] [4.31]

SMB -0.610 -0.801
[-5.35] [-7]

UMD 0.041 0.082
[0.69] [0.98]

Predicted SKW Predicted SKW <0

Alpha 0.51% 0.28%
[1.97] [1.56]

Mktrf -0.319 -0.378
[-4.2] [-6.62]

HML 0.723 0.460
[4.19] [2.86]

SMB -0.916 -0.712
[-8.65] [-7.31]

UMD -0.018 0.257
[-0.14] [3.25]

Panel B: IVOL regressed on four factors, conditioning on predicted SKW

Panel A: IVOL regressed on CS-SKW and Variance

Table 4. Skewness and the idiosyncratic volatility factor.

Panel A regresses the idiosyncratic volatility based factor (IVOL; formed as in Table 2) on the market, 
cross-sectional variances (CS-VAR), Breadth or cross-sectional skewness (CS-SKW), HML, SMB and 
UMD. Mktrf is the excess return on the market portfolio. Panel B performs a four-factor regression of 
IVOL while conditioning on the predicted SKW factor. The first specification only includes months for 
which  predicted CS-SKW is greater than zero, while the second specification only includes months for 
which predicted CS-SKW is less than zero.
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Portfolio 0 1 2 3 4

Gross Returns 1.06% 0.98% 1.05% 1.01% 0.72%

CAPM alpha 0.13% 0.06% 0.07% -0.05% -0.45%
t -statistic 1.85 1.25 1.24 -0.57 -2.9
CAPM Beta 0.91 0.90 1.03 1.21 1.42

FF alpha 0.08% 0.01% 0.08% -0.04% -0.38%
t -statistic 1.11 0.13 1.39 -0.45 -3.45
HML 0.13 0.13 -0.02 -0.08 -0.28
t -statistic 3.6 4.84 -0.33 -1.58 -5.11
SMB -0.12 -0.12 -0.01 0.25 0.66
t -statistic -4.52 -5.2 -0.2 6.75 14.28

4 factor alpha 0.06% 0.03% 0.11% 0.00% -0.32%
t -statistic 0.84 0.75 1.98 -0.01 -2.68

Table 5. The factor mimicking portfolio for cross-sectional skewness.

Panel A: Time-series factor regression on portfolios formed on prior sensitivities to cross-sectional 
skewness

This table contains results of regressions on portfolios formed on sensitivities to cross-sectional skewness. CS-
SKW is the skewness of all NYSE/AMEX/NASDAQ stocks (excluding the smallest 10% of NYSE firms)  
measured each month. Panel A reports results of time-series factor regressions on portfolios formed on 
sensitivities to cross-sectional skewness. All stocks are regressed on market returns and CS-SKW for months t-
36  to t-1.   Firms are sorted into portfolios based on CS-SKW betas (BCS). Value-weighted returns of these 
portfolios at time t  are displayed below, along with time-series factor regressions. Panel B sorts all stocks on 
size first, using NYSE size breakpoints and then on CS-SKW Betas. Panel C reports time-series factor 
regressions of the IVOL factor. This factor is constructed as in Table 2 and regressed on the Fama-French 
three factors and momentum. The value-weighted portfolios formed on sensitivities to cross-sectional 
skewness are used to construct SKW-FMP as the Portfolio 0 (Lowest CS-SKW beta) - Portfolio 4 (highest CS-
SKW beta).  
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BCS 0 1 2 3 4 BCS 0 1 2 3 4
0 1.24% 1.39% 1.29% 1.23% 0.97% 0 525 121 85 69 61
1 1.44% 1.41% 1.34% 1.19% 0.96% 1 525 122 86 70 62
2 1.37% 1.36% 1.28% 1.23% 1.03% 2 525 122 86 70 62
3 1.29% 1.30% 1.22% 1.18% 0.85% 3 525 122 86 70 62
4 0.82% 0.88% 0.96% 0.96% 0.86% 4 525 121 85 69 61

Size quintile 0 1 2 3 4

0-4 CAPM Regressions
Alpha 0.53% 0.71% 0.53% 0.47% 0.24%

[3.67] [4.51] [3.25] [2.9] [1.52]
0-4 FF 3 Factor regressions
Alpha 0.38% 0.47% 0.29% 0.27% 0.04%

[2.96] [3.85] [2.13] [1.93] [0.24]
BMkt -0.08 -0.22 -0.20 -0.22 -0.11

[-1.75] [-4.78] [-4.78] [-4.38] [-1.91]
BHML 0.33 0.51 0.50 0.42 0.41

[4.68] [6.69] [6.63] [5.72] [4.93]
BSMB -0.32 -0.30 -0.31 -0.30 -0.23

[-6.24] [-4.99] [-5.2] [-4.7] [-3.06]
0-4 Four Factor regressions
Alpha 0.25% 0.39% 0.32% 0.31% 0.10%

[1.62] [2.88] [2.11] [1.99] [0.62]

(1) (2) (3)
Coeff. t -stat Coeff. t -stat Coeff. t -stat

Alpha 0.67% [3.41] 0.24% [1.80] 0.20% [1.41]
Mktrf -0.73 [-10.77] -0.31 [ -6.24] -0.25 [-6.47]
SKW-FMP 0.86 [ 9.68] 0.55 [10.36]
HML 0.40 [4.63]
SMB -0.43 [-4.43]
UMD 0.05 [0.86]

Panel C: Time series regressions on 0- 4 (Low Beta CS-SKW - High Beta CSKEW) portfolios 
formed within size quintiles

Panel D: IVOL regressed on the four factors and skewness mimicking factor

Panel B: NYSE size breakpoints

NYSE size quintiles NYSE size quintiles
Gross Returns Time-series average number of stocks
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Mean Median N Std Dev Skewness

IPO returns 0.91% -0.20% 10,489     5.7% 7.64
Matched firm returns 1.38% 0.63% 10,499     5.3% 6.87
Excess BHR -0.47% -0.70% 10,489     7.7% 0.81

BHR p value N BHR p value N

Full sample: 1973-2002
Mean 0.05% 0.64 5452 -1.03%  < 0.01 5037
Median -0.30%  < 0.01 -1.04%  < 0.01

Sub sample: 1973-1988
Mean 0.17% 0.22 1958 -0.59%  < 0.01 1963
Median -0.07% 0.54 -0.61%  < 0.01

Sub sample: 1989-2002
Mean -0.02% 0.88 3494 -1.31%  < 0.01 3074
Median -0.48%  < 0.01 -1.29%  < 0.01

BHR p value N BHR p  value N

BHR conditioning on lagged cross-sectional skewness of young firms
Mean -0.14% 0.23 5358 -0.82%  < 0.01 5131
Median -0.45%  < 0.01 -0.96%  < 0.01

 BHR conditioning on lagged breadth of young firms
Mean -0.10% 0.37 5360 -0.86%  < 0.01 5129
Median -0.42%  < 0.01 -0.92%  < 0.01

BHR conditioning on cross-sectional skewness of old firms
Mean -0.13% 0.24 5628 -0.86%  < 0.01 4861
Median -0.43%  < 0.01 -0.99%  < 0.01

Skew < Median Skew > Median

Table 6. Initial Public Offering (IPO) under-performance and skewness.

Panel A: Summary Statistics

Panel B: BHR conditioning on cross-sectional skewness of young firms

Panel C: Robustness (Full Sample: 1973-2002)

YCS-SKW<Median YCS-SKW>Median

This table relates IPO under-performance to  skewness at the time of listing. IPO under-performance is the 
excess Buy and Hold Return (BHR) of IPO firms for their first three years (or until delisting) over firms 
matched on size. BHR are in monthly percent terms. Panel A presents summary statistics. Panel B presents 
mean and median BHRs when cross-sectional skewness of young firms (YCS-SKW) is less than or greater 
than its sample median. Young firms are firms that listed in the three years, excluding the current month. 
Panel C presents robustness checks, including using lagged cross-sectional skewness, lagged breadth (Mean - 
Median return) of young firms and cross-sectional skewness of old (> three years since listing) firms. The p 
values for means (t- test) and  medians (signed rank test) test whether they are equal to zero.
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Size quintile 0 1 2 3 4

New firm returns 1.38% 0.74% 0.75% 1.02% 0.91%
Average number of firms 187 218 201 153 64

Old firm retuns 1.87% 1.28% 1.29% 1.29% 0.98%
Average number of firms 808 777 795 843 931

0 1.26% 0.98% 1.22% 1.33% 1.52% 0 63 74 59 38 13
1 1.21% 1.62% 1.44% 1.66% 1.02% 1 58 70 59 41 13
2 1.60% 1.17% 1.20% 1.25% 1.29% 2 60 69 64 49 18
3 2.02% 0.77% 0.74% 1.07% 1.24% 3 62 71 70 60 26
4 1.26% -0.59% -0.32% 0.28% 0.47% 4 62 76 80 75 45

0 1 2

Table 7. New lists, volatility, and skewness in calendar time.

Panel B: Value-weighted portfolios of new lists by size and volatility quintiles

Panel A: Gross Returns

43 0

Gross Returns  Average number of firms

1 2 34Volatility
Size

Volatility
Size

This table reports time-series factor regressions of newly listed stocks (first appearance on CRSP of the firm < = 36 months ago). Panel A 
provides gross returns of portfolios sorted on size (last month's market capitalization) for new and old firms. Panels B and C sort all firms by 
size and prior idiosyncratic volatility, and report gross returns and results from three factor regressions for all new firms. Panel D sorts new 
and old (>36 months since listing) firms by market capitalization and calculates returns of a portfolio long old stocks and short new stocks. 
Panel D reports results of calendar time regressions of this portfolio on the market, the three-factor model, and the three-factor model 
augmented with the skewness mimicking portfolio (SKW-FMP).
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0 0.20% -0.10% 0.08% 0.16% 0.44% 0 0.75 -0.50 0.47 0.99 1.89
1 0.00% 0.30% 0.10% 0.41% -0.04% 1 0.01 1.44 0.63 1.91 -0.19
2 0.25% -0.17% -0.04% 0.06% 0.28% 2 0.68 -0.74 -0.19 0.34 1.18
3 0.74% -0.62% -0.46% -0.10% 0.32% 3 1.65 -2.08 -2.52 -0.59 1.23
4 -0.24% -1.95% -1.53% -0.71% -0.21% 4 -0.51 -5.27 -5.33 -3.13 -0.69

Size quintile 0 1 2 3 4

Returns 0.50% 0.55% 0.54% 0.27% 0.07%
t statistic 2.78 3.68 3.82 1.56 0.33

CAPM alpha 0.54% 0.59% 0.63% 0.42% 0.24%
t statistic 3.03 3.47 3.95 2.22 1.15

3 Factor alpha 0.21% 0.33% 0.28% 0.00% -0.01%
t statistic 1.05 1.89 2.27 -0.05 -0.03

3 Factor + SKW-FMP  alpha 0.14% 0.24% 0.18% -0.09% -0.09%
t statistic 0.64 1.33 1.58 -0.73 -0.53
SKW-FMP loading 0.167 0.206 0.216 0.181 0.196
t statistic 2.99 3.59 5.12 3.29 2.50

Panel D: Calendar time regressions for Old minus New firm portfolios, within each size quintile.

4

Panel C: Fama-French 3 factor regressions

0 1 2 3

t statistics for alphas

0 1 2 3 4

Alphas

Volatility
Size

Volatility
Size
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IVOL 0 1 2 3 4 IVOL 0 1 2 3 4
0 0.21% 0.09% -0.12% -0.05% 0.01% 0 2.78 1.12 -1.44 -0.61 0.11
1 0.23% -0.15% -0.04% 0.04% 0.09% 1 2.47 -1.65 -0.42 0.46 0.52
2 0.17% -0.08% -0.22% 0.05% -0.16% 2 1.22 -0.70 -1.50 0.34 -0.88
3 -0.48% -0.49% -0.51% -0.23% -0.46% 3 -2.93 -3.11 -3.81 -1.53 -2.19
4 -1.52% -1.14% -0.74% -1.05% -0.73% 4 -6.22 -6.49 -4.04 -5.05 -2.40

IVOL 0 1 2 3 4 IVOL 0 1 2 3 4
0 -0.25 0.24 0.47 0.65 0.74 0 -3.43 3.45 7.28 12.35 12.73
1 -0.61 0.09 0.36 0.49 0.63 1 -16.62 1.48 5.35 8.55 5.77
2 -0.85 -0.06 0.25 0.42 0.63 2 -7.42 -1.09 3.26 4.34 4.58
3 -0.91 -0.20 -0.03 0.10 0.44 3 -6.03 -2.06 -0.26 0.74 2.49
4 -0.85 -0.64 -0.09 0.05 0.39 4 -4.66 -4.28 -0.57 0.27 1.70

Size 1 2 3 4 5 Size 1 2 3 4 5
1 -0.76 -0.59 -0.36 -0.27 -0.27 1 -11.89 -6.30 -4.82 -4.45 -4.57
2 -0.57 -0.28 -0.15 -0.09 -0.14 2 -9.66 -4.49 -2.82 -1.73 -2.43
3 -0.48 -0.12 0.01 0.06 0.01 3 -11.59 -2.32 0.20 1.13 0.18
4 -0.32 0.03 0.11 0.10 0.12 4 -7.67 0.54 1.95 2.08 1.94
5 0.08 0.19 0.20 0.28 0.19 5 3.74 7.92 6.62 6.78 3.86

Coeff. t-stat Coeff. t-stat Coeff. Coeff. t-stat Coeff. t-stat

Alpha -0.45% -1.89 -0.47% -4.46 -0.02% 0.06% 0.30 -0.41% -4.08
Market 1.46 26.87 1.07 38.00 1.04 0.91 17.75 1.02 33.00
HML -0.33 -6.25 -0.24 -4.90
SMB 1.38 32.71 1.25 19.89
SKW-FMP -0.83
IVOL -0.76 -11.89 -0.15 -3.05

t-stat

0.002
18.05

-9.96

Panel B: B/M size breakpoints - HML loading

Panel C: 25 Size, B/M portfolios on CS-SKW

Panel D: Regressions of the small growth portfolio on the Fama-French factors, SKW and IVOL

(1) (5)(2) (3) (4)

Table 8. IVOL, SKW, and the small growth portfolio.

Book to market Book to market

NYSE B/M quintile

NYSE B/M quintile NYSE B/M quintile

NYSE B/M quintile

Coefficient t-statistic

Panel A: B/M size breakpoints - three factor alpha

Panel A and B examines value-weighted portfolios formed from sequential sorts, first on book-to-market and 
then on lagged idiosyncratic volatility. Panel A presents alphas from Fama-French three-factor regressions, 
while Panel B presents the loading on the HML factor. Panel C examines the 25 size and book-to-market 
portfolios formed as in Fama and French (1993). It reports the coefficient on CS-SKW from regressions of 
each portfolio on the market and CS-SKW. Panel D reports results of time series regressions of the small 
growth portfolio on the Fama-French factors, CS-SKW and IVOL.
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1 2 3

1966-75
Industry Consumer Goods Oil and Gas Trading
Fraction of highest CS-SKW Beta portfolio 7.8% 7.3% 6.7%
Relative representation 0.88 0.55 3.93

1976-85
Industry Oil and Gas Computer Hardware Trading
Fraction of highest CS-SKW Beta portfolio 25.7% 5.3% 5.3%
Relative representation 1.82 0.86 0.93

1986-95
Industry Business Services Trading Computer Hardware
Fraction of highest CS-SKW Beta portfolio 11.2% 7.9% 7.9%
Relative representation 3.53 0.68 1.93

1995-2005
Industry Business Services Electronic Equipment Communication
Fraction of highest CS-SKW Beta portfolio 21.1% 10.0% 8.8%
Relative representation 2.57 1.99 1.64

(1) (2) (3) (4)

-0.09 -0.064 -0.019 -0.03833
[-1.56] [-1.1] [-0.3] [-0.55]
3.94 3.39

[2.13] [1.73]
1.91 1.85

[2.34] [2.15]
-5.74 4.74
[-1.18] [1.07]

Lag market returns

Panel A: Industry effects

Panel B: Cross-sectional skewness and technological innovation.

Table 9. Interpreting cross-sectional skewness.

Constant

Lag Patent Grant Growth

Lag R&D growth

Panel A examines the industry composition of the portfolio of stocks with highest cross-sectional 
skewness betas over the prior 36 months. The first row reports the fraction of the portfolio's market 
capitalization that the industry represents. The Fama-French 48 industry classification scheme is used. 
The second row (relative representation) is the ratio of the previous row to the fraction of the overall 
market that this industry represents. Panel B reports regressions of annual measures of cross-sectional 
skewness for all Large and Medium stocks (> NYSE 30% size breakpoint). This is the skewness of all 
monthly returns of these stocks over the calendar year y . The explanatory variables include lagged 
patent grant growth (Log (Patentst-1 / Patentst-2)),  Log(R&Dt-1 / R&D t-2) , where R&D =Average R&D 
Expense/Total Assets across all publicly listed firms. 
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0 1 2

Gross Returns 1.24% 1.02% 0.89%

Alpha 0.32% 0.03% -0.09%
3.26 0.68 -1.27

Mkt Beta 1.041 0.986 1.052
36.05 86.56 50.67

CSKEW Beta -0.193 0.108 -0.051
-4.68 4.93 -2.69

Coefficient t-statistic

Alpha 0.43% 2.65
Mkt -0.21 -4.19
Coskew -0.19 -2.71
HML 0.44 5.41
SMB -0.75 -12.86
UMD 0.08 1.24

Panel B: Cross-sectional skewness factor regressed on co-skewness and additional controls

Table 10. Co-skewness and Cross-sectional skewness.

Panel A: Co-skew Beta portfolios

Co-skew Beta grouping

Panel A presents gross returns and results of a time-series regression of  portfolios formed on co-
skewness betas on the market and the cross-skewness factor. The portfolios are formed in a manner 
similar to Harvey and Siddique (2000). In particular, stocks are first regressed on market and squared 
market returns from periods t -36 to t -1. Value-weighted portfolios are formed based on ranks of the 
coefficients on squared market returns (co-skew beta). Portfolio 1 contains the smallest 30%, 2 the 
middle 40% and 3 the largest 30% co-skew betas. Panel B reports results of a regression of the factor 
mimicking portfolio for cross-sectional-skewness on the four factor model and the co-skewness factor, 
which is the difference between co-skew portfolio 0 and portfolio 2.
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N MAE MSE Correlation  SE(Rho)

MIDAS-SF  Stock 12474 0.1212% 0.0024% 75.7% 0.58%
MIDAS-SF market 12474 0.1440% 0.0030% 68.5% 0.65%
Lagged volatility 12474 0.337% 0.0038% 72.5% 0.62%
EGARCH(1,1) 12331 0.1646% 0.0057% 61.0% 0.71%
GARCH (1,1) 12474 0.1609% 0.0050% 63.3% 0.69%
ARMA(1,1) 12474 0.1217% 0.0025% 76.2% 0.58%

0 1 2 3 4

Gross returns 0.98% 1.05% 1.05% 0.93% 0.67%
Average number of stocks 670 670 670 670 670
3 factor alpha 0.04% 0.04% 0.03% -0.14% -0.46%
t 0.84 0.65 0.32 -1.37 -2.86

Panel A: In-sample performance (Total volatility)

Panel B: Value-weighted portfolios sorted on predicted idiosyncratic volatility

Table A1. Performance of volatility models.

Model

Panel A reports statistics on the performance of various models for forecasting volatility. These statistics 
include Mean Absolute Error (MAE), Mean Squared Error (MSE), Spearman's rank correlation coefficient 
(Correlation) of predicted volatility with realized volatility and an aymptotic standard error for the correlation 
coefficient. All performance measures are with respect to realized monthly volatility, each month. Panel B 
estimates predicted volatility from a MIDAS-SF model that uses past realizations of both market (Mktvol) and 
individual stock idiosyncratic volatility (Ivol). In particular, the following model is estimated for stocks with 
atleast three years of returns:
Ivol(t,t+30) =  α + β Ivol (t-5,t) + δ IVvol (t-22,t) + γ Ivol(t-66,t) 
                      + β’ MktVol (t-5,t) + δ’Mktvol (t-22,t) + γ’ Mktvol(t-66,t) + ε t

Panel B sorts stocks, into value-weighted portfolios using predicted values of volatility using this model. Panel 
B reports gross returns and four factor alphas for these portfolios.

- 52 -




